REFERENCES
1. Friedlingstein, P.; Jones, M. W.; O’sullivan, M.; et al. Global carbon budget 2021. Earth. Syst. Sci. Data. 2022, 14, 1917-2005.
2. IPCC. Climate change 2022: mitigation of climate change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Shukla, P.R.; Skea, J.; Slade, R.; et al.; Eds.; Cambridge University Press; 2022. https://www.ipcc.ch/report/ar6/wg3/ (accessed 2025-12-10).
3. Lu, Q.; Fang, K.; Heijungs, R.; et al. Imbalance and drivers of carbon emissions embodied in trade along the Belt and Road Initiative. Appl. Energy. 2020, 280, 115934.
4. Lenzen, M.; Sun, Y.; Faturay, F.; Ting, Y.; Geschke, A.; Malik, A. The carbon footprint of global tourism. Nat. Clim. Change. 2018, 8, 522-8.
5. ISO/TS 14067. Greenhouse gases-carbon footprint of products-requirements and guidelines for quantification and communication. 2013. https://www.iso.org/obp/ui/es/#iso:std:iso:ts:14067:ed-1:v1:en (accessed 2025-12-16).
6. Liu, T.; Wang, Q.; Su, B. A review of carbon labeling: standards, implementation, and impact. Renew. Sustain. Energy. Rev. 2016, 53, 68-79.
7. Taufique, K. M. R.; Nielsen, K. S.; Dietz, T.; Shwom, R.; Stern, P. C.; Vandenbergh, M. P. Revisiting the promise of carbon labelling. Nat. Clim. Chang. 2022, 12, 132-40.
8. Zhao, R.; Geng, Y.; Liu, Y.; Tao, X.; Xue, B. Consumers’ perception, purchase intention, and willingness to pay for carbon-labeled products: a case study of Chengdu in China. J. Clean. Prod. 2018, 171, 1664-71.
9. Wang, L.; Shang, Y.; Li, C. How to improve the initiative and effectiveness of enterprises to implement environmental management system certification? J. Clean. Prod. 2023, 404, 137013.
10. Chen, X.; Zhen, S.; Li, S.; Yang, J.; Ren, Y. Consumers’ willingness to pay for carbon-labeled agricultural products and its effect on greenhouse gas emissions: evidence from beef products in urban China. Environ. Impact. Assess. Rev. 2024, 106, 107528.
11. Xu, M.; Lin, B. Leveraging carbon label to achieve low-carbon economy: evidence from a survey in Chinese first-tier cities. J. Environ. Manage. 2021, 286, 112201.
12. Mohmmed, A.; Li, Z.; Olushola, Arowolo. A.; et al. Driving factors of CO2 emissions and nexus with economic growth, development and human health in the Top Ten emitting countries. Resour. Conserv. Recycl. 2019, 148, 157-69.
13. Li, Q.; Long, R.; Chen, H. Empirical study of the willingness of consumers to purchase low-carbon products by considering carbon labels: a case study. J. Clean. Prod. 2017, 161, 1237-50.
14. He, J.; Yang, Y.; Liao, Z.; Xu, A.; Fang, K. Linking SDG 7 to assess the renewable energy footprint of nations by 2030. Appl. Energy. 2022, 317, 119167.
15. Wu, Z.; Tan, Y.; Fang, K.; Wu, X.; Ge, Y.; Chang, J. Scaling laws of energy metabolism in modern cities: insights from biological metabolism. Energy. Build. 2025, 332, 115421.
16. Ding, Z.; Jiang, X.; Liu, Z.; Long, R.; Xu, Z.; Cao, Q. Factors affecting low-carbon consumption behavior of urban residents: a comprehensive review. Resour. Conserv. Recycl. 2018, 132, 3-15.
17. Tao, S.; Wu, X.; Fang, K.; Lin, D. Identifying drivers of county-level industrial carbon intensity by a generic machine learning framework. J. Clean. Prod. 2024, 454, 142276.
18. Zhang, D.; Yang, T.; Lou, S. The new fashion for sustainable consumption: would you buy carbon label textiles?: Innovative conceptual model based on the theory of planned behavior and signaling theory. Environ. Dev. Sustain.. 2025.
19. Zhan, Y.; Ren, Y.; Xu, J. Willingness to pay a premium for Eco-Label products in China: a mediation model based on quality value. Sci. Rep. 2025, 15, 1783.
20. Liu, M. Chinese consumer preferences and willingness to pay for carbon-labeled eggs: an analysis based on choice experiment method. Front. Sustain. Food. Syst. 2025, 9, 1569674.
21. Zhao, R.; Wu, D.; Zhang, J. Policy Implications on carbon labeling scheme toward carbon neutrality in China. Front. Environ. Sci. 2021, 9, 739943.
22. Ma, M.; Zhou, N.; Feng, W.; Yan, J. Challenges and opportunities in the global net-zero building sector. Cell. Rep. Sustain. 2024, 1, 100154.
23. National Certification and Accreditation Administration. Notice Concerning the list of pilot product carbon footprint labelling and certification. 2024. https://www.cnca.gov.cn/zwxx/tz/2024/art/2024/art_06b0e33152304fb5820e31a8c0c2a0ac.html (accessed 2025-12-16).
24. Imran, N.; Kumar, M.; Jagtap, S.; Trollman, H.; Gupta, S.; Garcia-garcia, G. Exploring consumer behaviour on carbon labelled food products: Evidence from a survey on the case of sandwich production and consumption in UK. J. Agric. Food. Res. 2025, 21, 101937.
25. Xu, Y.; Zhang, Z.; Ren, Y.; et al. Can carbon labels shift consumers towards sustainable food? Evidence from Chinese consumers. Sustain. Futures. 2024, 8, 100363.
26. He, J.; Wang, S.; Heijungs, R.; et al. Interprovincial food trade aggravates China’s land scarcity. Humanit. Soc. Sci. Commun. 2024, 11, 76.
27. Rijnsoever, F. J.; van Mossel, A.; Broecks, K. P. Public acceptance of energy technologies: the effects of labeling, time, and heterogeneity in a discrete choice experiment. Renew. Sust. Energ. Rev. 2015, 45, 817-29.
28. Hartikainen, H.; Roininen, T.; Katajajuuri, J.; Pulkkinen, H. Finnish consumer perceptions of carbon footprints and carbon labelling of food products. J. Clean. Prod. 2014, 73, 285-93.
29. Gadema, Z.; Oglethorpe, D. The use and usefulness of carbon labelling food: a policy perspective from a survey of UK supermarket shoppers. Food. Policy. 2011, 36, 815-22.
30. Feucht, Y.; Zander, K. Consumers’ preferences for carbon labels and the underlying reasoning. A mixed methods approach in 6 European countries. J. Clean. Prod. 2018, 178, 740-8.
31. Upham, P.; Dendler, L.; Bleda, M. Carbon labelling of grocery products: public perceptions and potential emissions reductions. J. Clean. Prod. 2011, 19, 348-55.
32. Xiang, C.; Liu, N. Factors and paths influencing students’ low-carbon behavior. Carbon. Manag. 2024, 15, 2349173.
33. Ren, G.; Liu, C.; Chen, Y. Motivation and guidance of college students’ low-carbon behavior: evidence from Chinese colleges and universities. Front. Psychol. 2024, 15, 1375583.
34. Cripps, J.; Thiagarajah, K. What do college students’ think on meat consumption and environmental sustainability? An exploratory study. J. Nutr. Educ. Behav. 2018, 50, S16-7.
35. Wang, C.; Zhou, X.; Zhang, R.; Liu, Y. The impact of context cues on college students’ purchase behavior for low-carbon products in CBEC. Front. Psychol. 2023, 14, 1287235.
36. Genc, T.; Ekici, A. A new lens to the understanding and reduction of household food waste: a fuzzy cognitive map approach. Sustain. Prod. Consum. 2022, 33, 389-411.
37. Meyers, S.; Schmitt, B.; Chester-jones, M.; Sturm, B. Energy efficiency, carbon emissions, and measures towards their improvement in the food and beverage sector for six European countries. Energy 2016, 104, 266-83.
38. Feng, W.; Cai, B.; Zhang, B. A Bite of China: food consumption and carbon emission from 1992 to 2007. China. Econ. Rev. 2020, 59, 100949.
39. Stern, P. C. New environmental theories: toward a coherent theory of environmentally significant behavior. J. Soc. Isssues. 2000, 56, 407-24.
40. Foxall, R. G.; Goldsmith, R. E.; Brown, S. Consumer psychology for marketing. Hampshire: Cengage Learning EMEA, 1998. https://archive.org/details/consumerpsycholo0000foxa_s3h5/mode/2up (accessed 2025-12-16).
41. Ajzen, I.; Fishbein, M. Understanding attitudes and predicting social behavior. Englewood Cliffs, NJ: Prentice-Hall, 1980. https://catalog.nlm.nih.gov/discovery/fulldisplay/alma996273473406676/01NLM_INST:01NLM_INST (accessed 2025-12-16).
42. Roth, C. E. Environmental literacy: it’s roots, evolution and directions in the 1990s. ERIC Clearinghouse for Science, Mathematics, and Environmental Education, Columbus, OH. 1992, ED348235. https://eric.ed.gov/?id=ED348235 (accessed 2025-12-16).
43. Maloney, M. P.; Ward, M. P. Ecology: let’s hear from the people: an objective scale for the measurement of ecological attitudes and knowledge. Am. Psychol. 1973, 28, 583-6.
44. Catton, W. R.; Dunlap, R. E. Environmental sociology: a new paradigm. Am. Sociol. 1978, 13, 41-9. https://www.jstor.org/stable/27702311 (accessed 2025-12-16).
45. Diekmann, A.; Preisendörfer, P. Umweltbewusstsein, ökonomische Anreize und Umweltverhalten. Schweiz. Z. Soziol. 1991, 17, 207-31. https://szs.sgs-sss.ch/wp-content/uploads/2016/08/revue_17_2_1991.pdf (accessed 2025-12-16).
46. Wang, L.; Chen, L.; Li, C. Research on strategies for improving green product consumption sentiment from the perspective of big data. J. Retail. Consum. Serv. 2024, 79, 103802.
47. Maniatis, P. Investigating factors influencing consumer decision-making while choosing green products. J. Clean. Prod. 2016, 132, 215-28.
48. Naderi, I.; Van Steenburg, E. Me first, then the environment: young Millennials as green consumers. Young. Consum. 2018, 19, 280-95.
49. Kumar, D.; Raju, K. The role of advertising in consumer decision making. J. Bus. Manag. 2024, 14, 35-7.
50. Maichum, K.; Parichatnon, S.; Peng, K. Application of the Extended theory of planned behavior model to investigate purchase intention of green products among thai consumers. Sustainability 2016, 8, 1077.
51. Wong, E. Y. C.; Chan, F. F. Y.; So, S. Consumer perceptions on product carbon footprints and carbon labels of beverage merchandise in Hong Kong. J. Clean. Prod. 2020, 242, 118404.
52. Edenbrandt, A. K.; Lagerkvist, C. J.; Nordström, J. Interested, indifferent or active information avoiders of carbon labels: cognitive dissonance and ascription of responsibility as motivating factors. Food. Policy. 2021, 101, 102036.
53. Wang, L.; Gao, P.; Li, C. Public response to heterogeneous environmental policies: scenario-based experiments from interest appeal, implementation costs, and commitment mechanism. Energy. Sour. B. Econ. Plan. Policy. 2024, 19, 2304905.
54. Lee, E.; Lee, S.; Yang, C. The influences of advertisement attitude and brand attitude on purchase intention of smartphone advertising. Ind. Manag. Data. Syst. 2017, 117, 1011-36.
55. Kasterine, A.; Vanzetti, D. The effectiveness, efficiency and equity of market based and voluntary measures to mitigate greenhouse gas emissions from the agri-food sector. Geneva: United Nations Conference on Trade and Development, 2010. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1768948 (accessed 2025-12-16).
56. Marcon, A.; Ribeiro, J. L. D.; Dangelico, R. M.; de Medeiros, J. F.; Marcon, É. Exploring green product attributes and their effect on consumer behaviour: a systematic review. Sustain. Prod. Consum. 2022, 32, 76-91.
57. Perino, G.; Panzone, L. A.; Swanson, T. Motivation crowding in real consumption decisions: who is messing with my groceries? Econ. Inq. 2014, 52, 592-607.
58. Vanclay, J. K.; Shortiss, J.; Aulsebrook, S.; et al. Customer response to carbon labelling of groceries. J. Consum. Policy. 2011, 34, 153-60.
59. Lourenco, C. E.; Porpino, G.; Araujo, C. M. L.; Vieira, L. M.; Matzembacher, D. E. We need to talk about infrequent high volume household food waste: a theory of planned behaviour perspective. Sustain. Prod. Consum. 2022, 33, 38-48.
60. Miller, K. Communications theories: perspectives, processes, and contexts. New York: McGraw-Hill, 2005. https://books.google.com/books/about/Communication_Theories_Perspectives_Proc.html?id=uQgcAQAAIAAJ (accessed 2025-12-16).
61. Paul, J.; Modi, A.; Patel, J. Predicting green product consumption using theory of planned behavior and reasoned action. J. Retail. Consum. Serv. 2016, 29, 123-34.
62. Taufique, K. M.; Vaithianathan, S. A fresh look at understanding Green consumer behavior among young urban Indian consumers through the lens of Theory of Planned Behavior. J. Clean. Prod. 2018, 183, 46-55.
63. Kollmuss, A.; Agyeman, J. Mind the Gap: why do people act environmentally and what are the barriers to pro-environmental behavior? Environ. Educ. Res. 2002, 8, 239-60.
64. Kim, B.; Schuldt, J. P. Judging the environmental impact of green consumption: evidence of quantity insensitivity. J. Environ. Psychol. 2018, 60, 122-7.
65. Trivedi, R. H.; Patel, J. D.; Acharya, N. Causality analysis of media influence on environmental attitude, intention and behaviors leading to green purchasing. J. Clean. Prod. 2018, 196, 11-22.
66. Davis, R. K. Recreation planning as an economic problem. Nat. Resour. J. 1963, 3, 239-49. https://digitalrepository.unm.edu/nrj/vol3/iss2/3 (accessed 2025-12-11).
67. Zhu, L.; Song, Q.; Sheng, N.; Zhou, X. Exploring the determinants of consumers’ WTB and WTP for electric motorcycles using CVM method in Macau. Energy. Policy. 2019, 127, 64-72.
68. Madududu, P.; Jourdain, D.; Tran, D.; et al. Consumers’ willingness-to-pay for dairy and plant-based milk alternatives towards sustainable dairy: a scoping review. Sustain. Prod. Consum. 2024, 51, 261-77.
69. Parvizi, S.; Mehrara, M.; Taiebnia, A. Individuals’ willingness to pay for HIV vaccines in Iran: contingent valuation method. Health. Sci. Rep. 2024, 7, e70016.
70. Wang, Y.; Wu, L.; Zhou, Y. Household’s willingness to pay for renewable electricity: a meta-analysis. Energy. Econ. 2024, 131, 107390.
71. Huang, Q. Recent advances of information literacy education for international students in Chinese academic libraries. J. Acad. Librariansh. 2022, 48, 102497.
72. Huang, C. L.; Chen, J. Y.; Lin, X. Q.; Deng, J. S.; Tung, T. H.; Zhu, J. S. Parents’ willingness to pay for their children’s COVID-19 vaccine in Taiwan, China: a cross-sectional study. Hum. Vaccin. Immunother. 2023, 19, 2168936.
73. Jackson, D. L. Revisiting sample size and number of parameter estimates: some support for the N:q hypothesis. Struct. Equ. Model. 2003, 10, 128-41.
74. National Bureau of Statistics of China. Statistical Monitoring Report of China National Program for Women’s Development (2021-2030) in 2023. https://www.stats.gov.cn/sj/zxfb/202501/t20250124_1958439.html (accessed 2025-12-10).
75. Ning, J. Main data of the seventh national population census. National Bureau of Statistics of China. 2021. https://www.stats.gov.cn/english/PressRelease/202105/t20210510_1817185.html (accessed 2025-12-10).
76. Ravallion, M.; Chen, S. Fleshing out the olive? Observations on income polarization in China since 1981. China. Econ. Rev. 2022, 76, 101871.
77. Bengart, P.; Vogt, B. Fuel mix disclosure in Germany-the effect of more transparent information on consumer preferences for renewable energy. Energy. Policy. 2021, 150, 112120.
78. Tao, Y.; Duan, M.; Deng, Z. Using an extended theory of planned behaviour to explain willingness towards voluntary carbon offsetting among Chinese consumers. Ecol. Econ. 2021, 185, 107068.
79. Lim, Y. W.; Shafie, A. A.; Chua, G. N.; Hassali, M. A. A. Determination of cost-effectiveness threshold for health care interventions in Malaysia. Value. Health. 2017, 20, 1131-8.
81. Aristizabal, J.; Giraldo, R.; Mateu, J. Analysis of variance for spatially correlated functional data: application to brain data. Spat. Stat. 2019, 32, 100381.
82. Meyners, M.; Hasted, A. On the applicability of ANOVA models for CATA data. Food. Qual. Prefer. 2021, 92, 104219.
83. Ajayi, S. O.; Oyedele, L. O. Critical design factors for minimising waste in construction projects: a structural equation modelling approach. Resour. Conserv. Recycl. 2018, 137, 302-13.
84. Jain, P.; Jain, P. Are the sustainable development goals really sustainable? A policy perspective. Sustain. Dev. 2020, 28, 1642-51.
85. Petersen, L.; Hörisch, J.; Jacobs, K. Worse is worse and better doesn’t matter?: The effects of favorable and unfavorable environmental information on consumers’ willingness to pay. J. Ind. Ecol. 2021, 25, 1338-56.
86. Flora, D. B.; Curran, P. J. An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data. Psychol. Methods. 2004, 9, 466-91.
87. Marquart-Pyatt, S. T.; Shwom, R. L.; Dietez, T.; et al. Understanding public opinion on climate change: a call for research. Environ. Sci. Policy. Sustain. Dev. 2011, 53, 38-42. https://www.tandfonline.com/doi/full/10.1080/00139157.2011.588555 (accessed 2025-12-11).
88. Zhao, R.; Yang, M.; Liu, J.; Yang, L.; Bao, Z.; Ren, X. University students’ purchase intention and willingness to pay for carbon-labeled food products: a purchase decision-making experiment. Int. J. Environ. Res. Public. Health. 2020, 17, 7026.
89. Li, X.; Jensen, K. L.; Clark, C. D.; Lambert, D. M. Consumer willingness to pay for beef grown using climate friendly production practices. Food. Policy. 2016, 64, 93-106.
90. Wang, X.; Li, W.; Song, J.; Duan, H.; Fang, K.; Diao, W. Urban consumers’ willingness to pay for higher-level energy-saving appliances: focusing on a less developed region. Resour. Conserv. Recycl. 2020, 157, 104760.
91. Schäufele, I.; Hamm, U. Consumers’ perceptions, preferences and willingness-to-pay for wine with sustainability characteristics: a review. J. Clean. Prod. 2017, 147, 379-94.
92. Valenzuela, L.; Ortega, R.; Moscovici, D.; Gow, J.; Ugaglia, A. A.; Mihailescu, R. Consumer willingness to pay for sustainable wine-the Chilean case. Sustainability 2022, 14, 10910.
93. Stockl, A. F.; Moscovici, D.; Tischler, S.; Eitle, M. W.; Dolezal, C. Consumer knowledge and preferences for organic and sustainably certified wines: lessons from the DACH Region-Germany, Austria, and Switzerland. Sustainability 2024, 16, 4464.
94. Lea, E.; Worsley, T. Australians’ organic food beliefs, demographics and values. British. Food. Journal. 2005, 107, 855-69.
95. Bougherara, D.; Combris, P. Eco-labelled food products: what are consumers paying for? Eur. Rev. Agric. Econ. 2009, 36, 321-41.
96. Gilg, A.; Barr, S. Behavioural attitudes towards water saving? Evidence from a study of environmental actions. Ecol. Econ. 2006, 57, 400-14.
97. Tianyu, J.; Meng, L. Does education increase pro-environmental willingness to pay? Evidence from Chinese household survey. J. Clean. Prod. 2020, 275, 122713.
98. Brécard, D.; Hlaimi, B.; Lucas, S.; Perraudeau, Y.; Salladarré, F. Determinants of demand for green products: an application to eco-label demand for fish in Europe. Ecol. Econ. 2009, 69, 115-25.
99. Podsakoff, P. M.; Organ, D. W. Self-reports in organizational research: problems and prospects. J. Manag. 1986, 12, 531-44.
100. Yates, J. F.; Stone, E. R. The risk construct. In Yates, J. F.; Eds.; Risk-taking behavior. UK: Wiley Chichester, 1992;1-25. https://www.researchgate.net/publication/232505306_The_risk_construct (accessed 2025-12-16).
101. Hair, J. F.; Sarstedt, M.; Ringle, C. M.; Mena, J. A. An assessment of the use of partial least squares structural equation modeling in marketing research. J. Acad. Mark. Sci. 2012, 40, 414-33.
102. Cheung, G. W.; Cooper-thomas, H. D.; Lau, R. S.; Wang, L. C. Reporting reliability, convergent and discriminant validity with structural equation modeling: a review and best-practice recommendations. Asia. Pac. J. Manag. 2024, 41, 745-83.
103. Hinkin, T. R. A brief tutorial on the development of measures for use in survey questionnaires. Organ. Res. Methods. 1998, 1, 104-21.
104. Rondoni, A.; Grasso, S. Consumers behaviour towards carbon footprint labels on food: a review of the literature and discussion of industry implications. J. Clean. Prod. 2021, 301, 127031.
105. Cadario, R.; Li, Y.; Klesse, A. K. Bridging the knowledge gap: mapping carbon emissions to food items facilitates choices of plant-based over animal-based items. Appetite 2025, 208, 107910.
106. Mostafa, M. M. Egyptian consumers’ willingness to pay for carbon-labeled products: a contingent valuation analysis of socio-economic factors. J. Clean. Prod. 2016, 135, 821-8.
107. Tang, Y.; Zhang, Q.; Fang, K. Does international trade reduce global carbon inequality? Evidence from a producer-consumer shared responsibility. J. Environ. Manage. 2024, 355, 120307.
108. Zhang, Q.; Fang, K. Comment on “Consumption-based versus production-based accounting of CO2 emissions: is there evidence for carbon leakage? Environ. Sci. Policy. 2019, 101, 94-6.
109. Raman, R.; Lathabai, H. H.; Nedungadi, P. Sustainable development goal 12 and its synergies with other SDGs: identification of key research contributions and policy insights. Discov. Sustain. 2024, 5, 150.
110. Oerlemans, L. A.; Chan, K.; Volschenk, J. Willingness to pay for green electricity: a review of the contingent valuation literature and its sources of error. Renew. Sustain. Energy. Rev. 2016, 66, 875-85.





