REFERENCES
1. Executive summary. An energy sector roadmap to carbon neutrality in China. IEA (2021) Paris. https://www.iea.org/reports/an-energy-sector-roadmap-to-carbon-neutrality-in-china/executive-summary (accessed 2025-10-28).
2. CO2 Emissions by country. Worldometer. https://www.worldometers.info/co2-emissions/co2-emissions-by-country/ (accessed 2025-10-28).
3. Lu, Q.; Duan, H.; Shi, H.; et al. Decarbonization scenarios and carbon reduction potential for China’s road transportation by 2060. npj. Urban. Sustain. 2022, 2, 34.
4. Zhang, R.; Hanaoka, T. Deployment of electric vehicles in China to meet the carbon neutral target by 2060: Provincial disparities in energy systems, CO2 emissions, and cost effectiveness. Resour. Conserv. Recycl. 2021, 170, 105622.
5. Li, X.; Yan, X. Fast penetration of electric vehicles in China cannot achieve steep cuts in air emissions from road transport without synchronized renewable electricity expansion. Energy 2024, 301, 131737.
6. Yao, X.; Fan, Y.; Zhao, F.; Ma, S. Economic and climate benefits of vehicle-to-grid for low-carbon transitions of power systems: a case study of China’s 2030 renewable energy target. J. Clean. Prod. 2022, 330, 129833.
7. New energy vehicle industry development plan (2021-2035). https://www.gov.cn/zhengce/zhengceku/2020-11/02/content_5556716.htm (accessed 2025-10-28).
8. Xia, X.; Li, P.; Xia, Z.; Wu, R.; Cheng, Y. Life cycle carbon footprint of electric vehicles in different countries: a review. Sep. Purif. Technol. 2022, 301, 122063.
9. Li, F.; Ou, R.; Xiao, X.; et al. Regional comparison of electric vehicle adoption and emission reduction effects in China. Resour. Conserv. Recycl. 2019, 149, 714-26.
10. Shafique, M.; Luo, X. Environmental life cycle assessment of battery electric vehicles from the current and future energy mix perspective. J. Environ. Manage. 2022, 303, 114050.
11. Li, X.; Liu, Y.; Qu, Y.; Ding, L.; Yan, X. Effect of electric vehicles and renewable electricity on future life cycle air emissions from China’s road transport fleet. Energy 2025, 318, 134969.
12. Xia, X.; Li, P. A review of the life cycle assessment of electric vehicles: considering the influence of batteries. Sci. Total. Environ. 2022, 814, 152870.
13. Shafique, M.; Azam, A.; Rafiq, M.; Luo, X. Life cycle assessment of electric vehicles and internal combustion engine vehicles: a case study of Hong Kong. Res. Transp. Econ. 2022, 91, 101112.
14. Safarian, S. Environmental and energy impacts of battery electric and conventional vehicles: a study in Sweden under recycling scenarios. Fuel. Commun. 2023, 14, 100083.
15. Franzò, S.; Nasca, A. The environmental impact of electric vehicles: a novel life cycle-based evaluation framework and its applications to multi-country scenarios. J. Clean. Prod. 2021, 315, 128005.
16. Duan, S.; Qiu, Z.; Liu, Z.; Liu, L. Impact assessment of vehicle electrification pathways on emissions of CO2 and air pollution in Xi’an, China. Sci. Total. Environ. 2023, 893, 164856.
17. Wang, L.; Yu, Y.; Huang, K.; Zhang, Z.; Li, X. The inharmonious mechanism of CO2, NOx, SO2, and PM2.5 electric vehicle emission reductions in Northern China. J. Environ. Manage. 2020, 274, 111236.
18. Yuksel, T.; Michalek, J. J. Effects of regional temperature on electric vehicle efficiency, range, and emissions in the United States. Environ. Sci. Technol. 2015, 49, 3974-80.
19. Wu, D.; Guo, F.; Field, F. R. I. I. I.; et al. Regional heterogeneity in the emissions benefits of electrified and lightweighted light-duty vehicles. Environ. Sci. Technol. 2019, 53, 10560-70.
20. Gan, Y.; Lu, Z.; He, X.; et al. Provincial greenhouse gas emissions of gasoline and plug-in electric vehicles in China: comparison from the consumption-based electricity perspective. Environ. Sci. Technol. 2021, 55, 6944-56.
21. Choi, H.; Shin, J.; Woo, J. Effect of electricity generation mix on battery electric vehicle adoption and its environmental impact. Energy. Policy. 2018, 121, 13-24.
22. Shen, W.; Han, W.; Wallington, T. J. Current and future greenhouse gas emissions associated with electricity generation in China: implications for electric vehicles. Environ. Sci. Technol. 2014, 48, 7069-75.
23. Hu, D.; Zhou, K.; Hu, R.; Yang, J. Provincial inequalities in life cycle carbon dioxide emissions and air pollutants from electric vehicles in China. Commun. Earth. Environ. 2024, 5, 726.
24. Tamayao, M. A. M.; Michalek, J. J.; Hendrickson, C.; et al. Regional variability and uncertainty of electric vehicle life cycle CO2 emissions across the United States. Environ. Sci. Technol. 2015, 49, 8844-55.
25. Duan, C.; Motter, A. E. Grid congestion stymies climate benefit from U.S. vehicle electrification. Nat. Commun. 2025, 16, 7242.
26. Moro, A.; Lonza, L. Electricity carbon intensity in European Member States: Impacts on GHG emissions of electric vehicles. Transp. Res. D. Transp. Environ. 2018, 64, 5-14.
27. Ellingsen L, Jayne Thorne R, Wind J, Figenbaum E, Romare M, Nordelöf A. Life cycle assessment of battery electric buses. Transp. Res. Part. D. Transp. Environ. 2022, 112, 103498.
28. Abdul-Manan, A. F. N.; Gordillo Zavaleta, V.; Agarwal, A. K.; et al. Electrifying passenger road transport in India requires near-term electricity grid decarbonisation. Nat. Commun. 2022, 13, 2095.
29. Aryan, Y.; CK, A.; Dikshit, A. K.; Shinde, A. M. Comparative life cycle assessment of battery electric vehicles in developing countries under current and future electricity mix scenarios. Discov. Sustain. 2025, 6, 675.
30. Peng, T.; Ren, L.; Ou, X. Development and application of life-cycle energy consumption and carbon footprint analysis model for passenger vehicles in China. Energy 2023, 282, 128412.
31. Guo, X.; Sun, Y.; Ren, D. Life cycle carbon emission and cost-effectiveness analysis of electric vehicles in China. Energy. Sustain. Dev. 2023, 72, 1-10.
32. Zhang, H.; Zhao, F.; Hao, H.; Liu, Z. Comparative analysis of life cycle greenhouse gas emission of passenger cars: a case study in China. Energy 2023, 265, 126282.
33. Gan, Y.; Lu, Z.; He, X.; Wang, M.; Amer, A. A. Cradle-to-grave lifecycle analysis of greenhouse gas emissions of light-duty passenger vehicles in China: towards a carbon-neutral future. Sustainability 2023, 15, 2627.
34. Qiao, Q.; Zhao, F.; Liu, Z.; Jiang, S.; Hao, H. Cradle-to-gate greenhouse gas emissions of battery electric and internal combustion engine vehicles in China. Applied. Energy. 2017, 204, 1399-411.
35. Tang, B.; Xu, Y.; Wang, M. Life cycle assessment of battery electric and internal combustion engine vehicles considering the impact of electricity generation mix: a case study in China. Atmosphere 2022, 13, 252.
36. Yu, Y.; Xu, H.; Cheng, J.; et al. Which type of electric vehicle is worth promoting mostly in the context of carbon peaking and carbon neutrality? A case study for a metropolis in China. Sci. Total. Environ. 2022, 837, 155626.
37. Yang, L.; Yu, B.; Yang, B.; Chen, H.; Malima, G.; Wei, Y. Life cycle environmental assessment of electric and internal combustion engine vehicles in China. J. Clean. Prod. 2021, 285, 124899.
38. Chen, Q.; Lai, X.; Gu, H.; et al. Investigating carbon footprint and carbon reduction potential using a cradle-to-cradle LCA approach on lithium-ion batteries for electric vehicles in China. J. Clean. Prod. 2022, 369, 133342.
39. Qiao, Q.; Zhao, F.; Liu, Z.; He, X.; Hao, H. Life cycle greenhouse gas emissions of electric vehicles in China: combining the vehicle cycle and fuel cycle. Energy 2019, 177, 222-33.
40. Liu, D.; Xu, L.; Sadia, U. H.; Wang, H. Evaluating the CO2 emission reduction effect of China’s battery electric vehicle promotion efforts. Atmos. Pollut. Res. 2021, 12, 101115.
41. China’s NEV market penetration rate at 5.4% in 2020: industry report. https://www.chinadaily.com.cn/a/202108/27/WS61284d64a310efa1bd66b8ed.html (accessed 2025-10-28).
42. China Electricity Council. China electric power statistical yearbook 2021, China Statistics Press. https://www.stats.gov.cn/zs/tjwh/tjkw/tjzl/202302/t20230215_1907998.html (accessed 2025-10-28).
43. National Bureau of Statistics. China statistical yearbook 2021. https://www.stats.gov.cn/sj/ndsj/2021/indexeh.htm (accessed 2025-10-28).
44. Peng, T.; Ou, X.; Yuan, Z.; Yan, X.; Zhang, X. Development and application of China provincial road transport energy demand and GHG emissions analysis model. Appl. Energy. 2018, 222, 313-28.
45. China automotive industry yearbook 2021, China Association of Automobile Manufacturers. https://www.shujuku.org/china-automobile-industry-yearbook.html (accessed 2025-10-31).
46. China Electronics and Information Industry Development Research Institute. White paper on the development of lithium-ion battery industry. 2021 Edition. https://baijiahao.baidu.com/s?id=1715028998120746039&wfr=spider&for=pc (accessed 2025-10-31).
47. ecoinvent. Data with purpose: ecoinvent is a trusted global resource for environmental data. https://ecoinvent.org/ (accessed 2025-10-28).
48. OpenLca.org. openLCA is a free, professional Life Cycle Assessment (LCA) and footprint software with a broad range of features and many available databases, developed by GreenDelta since 2006. https://www.openlca.org/ (accessed 2025-10-28).
49. China State Council. Guidelines for expediting the development of a circular waste management system. https://www.gov.cn/zhengce/zhengceku/202402/content_6931080.htm (accessed 2025-10-28).
50. Wang, X.; Xue, J.; Hou, X. Barriers analysis to Chinese waste photovoltaic module recycling under the background of “double carbon”. Renew. Energy. 2023, 214, 39-54.
51. Baldassarre, B.; Carrara, S. Critical raw materials, circular economy, sustainable development: EU policy reflections for future research and innovation. Resour. Conserv. Recycl. 2025, 215, 108060.
52. Bleischwitz, R.; Yang, M.; Huang, B.; et al. The circular economy in China: Achievements, challenges and potential implications for decarbonisation. Resour. Conserv. Recycl. 2022, 183, 106350.
53. Xu, C.; Dai, Q.; Gaines, L.; Hu, M.; Tukker, A.; Steubing, B. Future material demand for automotive lithium-based batteries. Commun. Mater. 2020, 1, 99.
54. Maisel, F.; Neef, C.; Marscheider-weidemann, F.; Nissen, N. F. A forecast on future raw material demand and recycling potential of lithium-ion batteries in electric vehicles. Resour. Conserv. Recycl. 2023, 192, 106920.
55. Jiang, R.; Wu, C.; Feng, W.; et al. Impact of electric vehicle battery recycling on reducing raw material demand and battery life-cycle carbon emissions in China. Sci. Rep. 2025, 15, 2267.
56. Yu, M.; Bai, B.; Xiong, S.; Liao, X. Evaluating environmental impacts and economic performance of remanufacturing electric vehicle lithium-ion batteries. J. Clean. Prod. 2021, 321, 128935.
57. Chen, Q.; Lai, X.; Hou, Y.; et al. Investigating the environmental impacts of different direct material recycling and battery remanufacturing technologies on two types of retired lithium-ion batteries from electric vehicles in China. Sep. Purif. Technol. 2023, 308, 122966.
58. Qiao, Q.; Zhao, F.; Liu, Z.; Hao, H. Electric vehicle recycling in China: economic and environmental benefits. Resour. Conserv. Recycl. 2019, 140, 45-53.
59. Majewski, P.; Florin, N.; Jit, J.; Stewart, R. A. End-of-life policy considerations for wind turbine blades. Renew. Sustain. Energy. Rev. 2022, 164, 112538.
60. Alavi, Z.; Khalilpour, K.; Florin, N.; Hadigheh, A.; Hoadley, A. End-of-life wind turbine blade management across energy transition: a life cycle analysis. Resour. Conserv. Recycl. 2025, 213, 108008.
61. Yuan, X.; Xu, Z. Life cycle assessment of decommissioned silicon photovoltaic module recycling using different technological configurations in China. J. Environ. Manage. 2024, 370, 122476.
62. Luk, J. M.; Kim, H. C.; De Kleine, R.; Wallington, T. J.; MacLean, H. L. Review of the fuel saving, life cycle GHG emission, and ownership cost impacts of lightweighting vehicles with different powertrains. Environ. Sci. Technol. 2017, 51, 8215-28.
63. Raugei, M.; Morrey, D.; Hutchinson, A.; Winfield, P. A coherent life cycle assessment of a range of lightweighting strategies for compact vehicles. J. Clean. Prod. 2015, 108, 1168-76.
64. Ministry of Industry and Information Technology of the People’s Republic of China. Industry standard specifications for the comprehensive utilization of waste power batteries from new energy vehicles (2024 Edition). https://www.miit.gov.cn/jgsj/jns/wjfb/art/2024/art_a05ad4164f20482088a97fcbff80b987.html (accessed 2025-10-31).


 
 
 

