REFERENCES
1. Prada, M.; Prada, I. F.; Cristea, M.; et al. New solutions to reduce greenhouse gas emissions through energy efficiency of buildings of special importance - hospitals. Sci. Total. Environ. 2020, 718, 137446.
2. Wei, W.; Hao, S.; Yao, M.; et al. Unbalanced economic benefits and the electricity-related carbon emissions embodied in China's interprovincial trade. J. Environ. Manag. 2020, 263, 110390.
3. Li, L.; Huang, X.; Yang, H. Optimizing land use patterns to improve the contribution of land use planning to carbon neutrality target. Land. Use. Policy. 2023, 135, 106959.
4. He, W.; Zhang, B. A comparative analysis of Chinese provincial carbon dioxide emissions allowances allocation schemes in 2030: an egalitarian perspective. Sci. Total. Environ. 2021, 765, 142705.
5. Brown, M. A.; Dwivedi, P.; Mani, S.; et al. A framework for localizing global climate solutions and their carbon reduction potential. Proc. Natl. Acad. Sci. USA. 2021, 118, e2100008118.
6. Sharifi, E.; Larbi, M.; Omrany, H.; Boland, J. Climate change adaptation and carbon emissions in green urban spaces: case study of Adelaide. J. Clean. Prod. 2020, 254, 120035.
7. Yang, H.; Ciais, P.; Frappart, F.; et al. Global increase in biomass carbon stock dominated by growth of northern young forests over past decade. Nat. Geosci. 2023, 16, 886-92.
8. Chen, J. M.; Ju, W.; Ciais, P.; et al. Vegetation structural change since 1981 significantly enhanced the terrestrial carbon sink. Nat. Commun. 2019, 10, 4259.
9. Hubau, W.; Lewis, S. L.; Phillips, O. L.; et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 2020, 579, 80-7.
10. Gruber, N.; Clement, D.; Carter, B. R.; et al. The oceanic sink for anthropogenic CO2 from 1994 to 2007. Science 2019, 363, 1193-9.
11. Li, Z.; Chen, Y.; Zhang, Q.; Li, Y. Spatial patterns of vegetation carbon sinks and sources under water constraint in Central Asia. J. Hydrol. 2020, 590, 125355.
12. Winkler, K.; Yang, H.; Ganzenmüller, R.; et al. Changes in land use and management led to a decline in Eastern Europe’s terrestrial carbon sink. Commun. Earth. Environ. 2023, 4, 893.
13. Raw, J. L.; Van, Niekerk. L.; Chauke, O.; Mbatha, H.; Riddin, T.; Adams, J. B. Blue carbon sinks in South Africa and the need for restoration to enhance carbon sequestration. Sci. Total. Environ. 2023, 859, 160142.
14. Duque, A.; Peña, M. A.; Cuesta, F.; et al. Mature Andean forests as globally important carbon sinks and future carbon refuges. Nat. Commun. 2021, 12, 2138.
15. Chen, Y.; Feng, X.; Tian, H.; et al. Accelerated increase in vegetation carbon sequestration in China after 2010: a turning point resulting from climate and human interaction. Glob. Chang. Biol. 2021, 27, 5848-64.
16. Zhang, D.; Zhao, Y.; Wu, J. Assessment of carbon balance attribution and carbon storage potential in China's terrestrial ecosystem. Resour. Conserv. Recycl. 2023, 189, 106748.
17. Steenberg, J. W. N.; Ristow, M.; Duinker, P. N.; et al. A national assessment of urban forest carbon storage and sequestration in Canada. Carbon. Balanc. Manag. 2023, 18, 11.
18. Qin, M.; Zhao, Y.; Liu, Y.; Jiang, H.; Li, H.; Zhu, Z. Multi-scenario simulation for 2060 and driving factors of the eco-spatial carbon sink in the Beibu gulf urban agglomeration, China. Chin. Geogr. Sci. 2023, 33, 85-101.
19. Pan, Y.; Zhang, H.; Wang, C.; Zhou, Y. Impact of land use change on regional carbon sink capacity: evidence from Sanmenxia, China. Ecol. Indic. 2023, 156, 111189.
20. Gong, W.; Duan, X.; Sun, Y.; et al. Multi-scenario simulation of land use/cover change and carbon storage assessment in Hainan coastal zone from perspective of free trade port construction. J. Clean. Prod. 2023, 385, 135630.
21. Wang, Y.; Liang, D.; Wang, J.; Zhang, Y.; Chen, F.; Ma, X. An analysis of regional carbon stock response under land use structure change and multi-scenario prediction, a case study of Hefei, China. Ecol. Indic. 2023, 151, 110293.
22. Luo, M.; Liu, H.; Gao, J.; et al. Spatiotemporal variations and influencing factors of urban carbon sink: a case study of Wuhan, China. Ecosyst. Health. Sustain. 2023, 9, 0133.
23. Xiang, S.; Wang, Y.; Deng, H.; Yang, C.; Wang, Z.; Gao, M. Response and multi-scenario prediction of carbon storage to land use/cover change in the main urban area of Chongqing, China. Ecol. Indic. 2022, 142, 109205.
24. Bherwani, H.; Banerji, T.; Menon, R. Role and value of urban forests in carbon sequestration: review and assessment in Indian context. Environ. Dev. Sustain. 2024, 26, 603-26.
25. Shi, X.; Wang, T.; Lu, S.; Chen, K.; He, D.; Xu, Z. Evaluation of China's forest carbon sink service value. Environ. Sci. Pollut. Res. Int. 2022, 29, 44668-77.
26. Wei, J.; Shen, M. Analysis of the efficiency of forest carbon sinks and its influencing factors - evidence from China. Sustainability 2022, 14, 11155.
27. Song, S.; Kong, M.; Su, M.; Ma, Y. Study on carbon sink of cropland and influencing factors: a multiscale analysis based on geographical weighted regression model. J. Clean. Prod. 2024, 447, 141455.
28. Li, X.; Jiang, Y.; Liu, Y.; Sun, Y.; Li, C. The impact of landscape spatial morphology on green carbon sink in the urban riverfront area. Cities 2024, 148, 104919.
29. Wei, X.; Yang, J.; Luo, P.; Lin, L.; Lin, K.; Guan, J. Assessment of the variation and influencing factors of vegetation NPP and carbon sink capacity under different natural conditions. Ecol. Indic. 2022, 138, 108834.
30. Masoudi, M.; Tan, P. Y. Multi-year comparison of the effects of spatial pattern of urban green spaces on urban land surface temperature. Landsc. Urban. Plan. 2019, 184, 44-58.
31. Wong, N. H.; Tan, C. L.; Kolokotsa, D. D.; Takebayashi, H. Greenery as a mitigation and adaptation strategy to urban heat. Nat. Rev. Earth. Environ. 2021, 2, 166-81.
32. Venter, Z. S.; Hassani, A.; Stange, E.; Schneider, P.; Castell, N. Reassessing the role of urban green space in air pollution control. Proc. Natl. Acad. Sci. USA. 2024, 121, e2306200121.
33. Zhang, H. O.; Cen, Q. H. A study summary of urban open space abroad. Urban. Plan. Forum. 2007, 5, 78-84.
34. Feng, L.; Song, W. R. Research advance in ecosyste m service of urban green space. Chin. J. Appl. Ecol. 2004, 3, 527-31.
35. Chen, L.; Wang, Y.; Zhu, E.; Wu, H.; Feng, D. Carbon storage estimation and strategy optimization under low carbon objectives for urban attached green spaces. Sci. Total. Environ. 2024, 923, 171507.
36. Wang, R. Y.; Mo, X.; Ji, H.; et al. Comparison of the CASA and InVEST models' effects for estimating spatiotemporal differences in carbon storage of green spaces in megacities. Sci. Rep. 2024, 14, 5456.
37. Zhao, D.; Cai, J.; Shen, S.; Liu, Q.; Lan, Y. Nature-based solutions: assessing the carbon sink potential and influencing factors of urban park plant communities in the temperate monsoon climate zone. Sci. Total. Environ. 2024, 950, 175347.
38. Wei, M.; Du, C.; Wang, X. Analysis and forecast of land use and carbon sink changes in Jilin Province, China. Sustainability 2023, 15, 14040.
39. Pei, J.; Niu, Z.; Wang, L.; et al. Spatial-temporal dynamics of carbon emissions and carbon sinks in economically developed areas of China: a case study of Guangdong Province. Sci. Rep. 2018, 8, 13383.
40. Fang, J.; Yu, G.; Liu, L.; Hu, S.; Chapin, F. S. 3rd. Climate change, human impacts, and carbon sequestration in China. Proc. Natl. Acad. Sci. USA. 2018, 115, 4015-20.
41. Tang, X.; Zhao, X.; Bai, Y.; et al. Carbon pools in China's terrestrial ecosystems: new estimates based on an intensive field survey. Proc. Natl. Acad. Sci. USA. 2018, 115, 4021-6.
42. Chen, K.; Tao, W.; Fang, X.; We, J. Carbon neutrality assessment and planning application path in territorial spatial planning. Planners 2022, 38, 134-41.
43. Piao, S.; Fang, J.; Zhou, L.; Zhu, B.; Tan, K.; Tao, S. Changes in vegetation net primary productivity from 1982 to 1999 in China. Global. Biogeochem. Cycles. 2005, 19, 2004GB002274.
44. Kong, D.; Zhang, H. Economic value of wetland ecosystem services in the Heihe National Nature Reserve of Zhangye. Acta. Ecol. Sinica. 2015, 35, 972-83.
45. Zhao, M.; Kong, Z. H.; Escobedo, F. J.; Gao, J. Impacts of urban forests on offsetting carbon emissions from industrial energy use in Hangzhou, China. J. Environ. Manag. 2010, 91, 807-13.
46. Berzaghi, F.; Chami, R.; Cosimano, T.; Fullenkamp, C. Financing conservation by valuing carbon services produced by wild animals. Proc. Natl. Acad. Sci. USA. 2022, 119, e2120426119.
47. Li, S.; Zhang, D.; Xie, Y.; Yang, C. Analysis on the spatio-temporal evolution and influencing factors of China's grain production. Environ. Sci. Pollut. Res. Int. 2022, 29, 23834-46.
48. He, Z.; Rui, P. Q.; Rui, W.; Li, Q. W.; Xun, Z. J. Spatiotemporal patterns and factors influencing county carbon sinks in China. Acta. Ecol. Sinica. 2020, 40, 8988-98.
49. Pan, Y.; Birdsey, R. A.; Phillips, O. L.; et al. The enduring world forest carbon sink. Nature 2024, 631, 563-9.