REFERENCES
1. International Energy Agency. Global methane tracker 2025; IEA: Paris, France, 2025; p 16. Available from: https://www.iea.org/reports/global-methane-tracker-2025 [Last accessed on 19 Sep 2025].
2. Stavert, A. R.; Saunois, M.; Canadell, J. G.; et al. Regional trends and drivers of the global methane budget. Glob. Chang. Biol. 2022, 28, 182-200.
3. Kirschke, S.; Bousquet, P.; Ciais, P.; et al. Three decades of global methane sources and sinks. Nature. Geosci. 2013, 6, 813-23.
4. Petrescu, A. M. R.; Peters, G. P.; Engelen, R.; et al. Comparison of observation- and inventory-based methane emissions for eight large global emitters. Earth. Syst. Sci. Data. 2024, 16, 4325-50.
5. Poulter, B.; Murray‐tortarolo, G.; Hayes, D. J.; et al. The North American greenhouse gas budget: emissions, removals, and integration for CO2, CH4, and N2O (2010-2019): results from the second regional carbon cycle assessment and processes study (RECCAP2). Global. Biogeochem. Cycles. 2025, 39, e2024GB008310.
6. Hemati, M.; Mahdianpari, M.; Nassar, R.; Shiri, H.; Mohammadimanesh, F. Urban methane emission monitoring across North America using TROPOMI data: an analytical inversion approach. Sci. Rep. 2024, 14, 9041.
7. Hoy, Z. X.; Woon, K. S.; Chin, W. C.; Van, Fan. Y.; Yoo, S. J. Curbing global solid waste emissions toward net-zero warming futures. Science 2023, 382, 797-800.
8. International Energy Agency. Methane tracker - data tools; 2023. Available from: https://www.iea.org/data-and-statistics/data-tools/methane-tracker [Last accessed on 19 Sep 2025].
9. Yang, R.; Feng, X.; Wang, M.; Li, L. Analysis on the driving forces of methane emissions from solid waste treatment in G7 countries. Adv. Clim. Chang. Res. 2023, 19, 573-81. (in Chinese).
10. United Nations Environment Programme. Global methane assessment: benefits and costs of mitigating methane emissions. Nairobi, Kenya: United Nations Environment Programme; 2021. Available from: https://www.unep.org/resources/report/global-methane-assessment-benefits-and-costs-mitigating-methane-emissions [Last accessed on 19 Sep 2025].
11. Maasakkers, J. D.; Varon, D. J.; Elfarsdóttir, A.; et al. Using satellites to uncover large methane emissions from landfills. Sci. Adv. 2022, 8, eabn9683.
12. Moore, D. P.; Li, N. P.; Wendt, L. P.; et al. Underestimation of Sector-Wide Methane Emissions from United States Wastewater Treatment. Environ. Sci. Technol. 2023, 57, 4082-90.
13. Wang, Y.; Zhou, C.; Lou, Z.; et al. Underestimated methane emissions from solid waste disposal sites reveal missed greenhouse gas mitigation opportunities. Engineering 2024, 36, 12-5.
14. Wang, Y.; Fang, M.; Lou, Z.; et al. Methane emissions from landfills differentially underestimated worldwide. Nat. Sustain. 2024, 7, 496-507.
15. Du, M.; Peng, C.; Wang, X.; Chen, H.; Wang, M.; Zhu, Q. Quantification of methane emissions from municipal solid waste landfills in China during the past decade. Renew. Sustain. Energy. Rev. 2017, 78, 272-9.
16. Ghosh, P.; Shah, G.; Chandra, R.; et al. Assessment of methane emissions and energy recovery potential from the municipal solid waste landfills of Delhi, India. Bioresour. Technol. 2019, 272, 611-5.
17. Liu, Y.; Cheng, Z.; Chen, A. Y.; et al. Big disparities in CH4 emission patterns from landfills between the United States and China and their behind driving forces. Fundam. Res. 2025, 5, 734-9.
18. Zhang, S.; Lei, M.; Huang, X.; Zhang, Y. Evaluation of methane emission from MSW landfills in China, India, and the U.S. from space using a two-tier approach. J. Environ. Manag. 2025, 377, 124705.
19. Krause, M. J.; Thoma, E. D.; Bryant, A.; et al. A high-resolution satellite survey of methane emissions from 60 North American municipal solid waste landfills. Environ. Sci. Technol. 2025, 59, 15080-91.
20. Delgado, M.; López, A.; Esteban, A. L.; Lobo, A. Some findings on the spatial and temporal distribution of methane emissions in landfills. J. Clean. Prod. 2022, 362, 132334.
21. Scarpelli, T. R.; Cusworth, D. H.; Duren, R. M.; et al. Investigating major sources of methane emissions at US landfills. Environ. Sci. Technol. 2024, 58, 21545-56.
22. Li, H.; You, L.; Du, H.; et al. Methane and nitrous oxide emissions from municipal wastewater treatment plants in China: A plant-level and technology-specific study. Environ. Sci. Ecotechnol. 2024, 20, 100345.
23. Song, C.; Zhu, J. J.; Willis, J. L.; Moore, D. P.; Zondlo, M. A.; Ren, Z. J. Methane emissions from municipal wastewater collection and treatment systems. Environ. Sci. Technol. 2023, 57, 2248-61.
24. Liu, W.; Li, N.; Gao, P.; Di, X.; Liu, L.; Li, G. K. Tracking China's methane emissions from wastewater: inventories, driving forces, and mitigation potential. Resour. Conserv. Recy. 2024, 210, 107831.
25. Yin, Y.; Qi, X.; Gao, L.; et al. Quantifying methane influx from sewer into wastewater treatment processes. Environ. Sci. Technol. 2024, 58, 9582-90.
26. Xu, Z.; Zheng, Y.; Wu, Y. Paving the way for sustainable agriculture: an analysis of evolution and driving forces of methane emissions reduction in China. Resour. Conserv. Recy. 2024, 202, 107392.
27. Shen, N.; Tan, J.; Wang, W.; et al. Long-term changes of methane emissions from rice cultivation during 2000 - 2060 in China: trends, driving factors, predictions and policy implications. Environ. Int. 2024, 191, 108958.
28. Brown, S. Greenhouse gas accounting for landfill diversion of food scraps and yard waste. Compost. Sci. Util. 2016, 24, 11-9.
29. Wang, X.; Wang, K.; Liu, H.; et al. Dynamic methane emissions from China's fossil-fuel and food systems: socioeconomic drivers and policy optimization strategies. Environ. Sci. Technol. 2025, 59, 349-61.
30. Wang, Y.; Zhu, Z.; Dong, H.; Zhang, X.; Wang, S.; Gu, B. Mitigation potential of methane emissions in China's livestock sector can reach one-third by 2030 at low cost. Nat. Food. 2024, 5, 603-14.
31. Zhang, L.; Tian, H.; Shi, H.; et al. A 130-year global inventory of methane emissions from livestock: Trends, patterns, and drivers. Glob. Chang. Biol. 2022, 28, 5142-58.
32. Chen, R.; Wang, Y.; Hu, J.; Lin, X. Methane emission and mitigation strategies in animal manure management system. Acta. Pedol. Sin. 2012, 49, 815-23. (in Chinese). Available from: https://www.cabidigitallibrary.org/doi/full/10.5555/20123362089 [Last accessed on 22 Sep 2025].
33. Ministry of Ecology and Environment of the People's Republic of China Home Page. Available from: https://www.mee.gov.cn/ [Last accessed on 19 Sep 2025].
34. Department of Rural Social and Economic Survey, National Bureau of Statistics. China Rural Statistical Yearbook. China Statistics Press; 2021. Available from: https://www.mohurd.gov.cn/ [Last accessed on 22 Sep 2025].
35. Ministry of Housing and Urban-Rural Development of the People's Republic of China Home Page. Available from: https://www.mohurd.gov.cn/ [Last accessed on 19 Sep 2025].
36. U.S. Environmental Protection Agency. Landfill gas emissions model (LandGEM): estimates emission rates from municipal solid waste landfills; Washington, DC: U.S. Environmental Protection Agency; 2005. Available from: https://www.epa.gov/land-research/landfill-gas-emissions-model-landgem [Last accessed on 22 Sep 2025].
37. Huang, W.; Wachemo, A. C.; Yuan, H.; Li, X. Modification of corn stover for improving biodegradability and anaerobic digestion performance by Ceriporiopsis subvermispora. Bioresour. Technol. 2019, 283, 76-85.
38. Tian, W.; Li, J.; Zhu, L.; et al. Insights of enhancing methane production under high-solid anaerobic digestion of wheat straw by calcium peroxide pretreatment and zero valent iron addition. Renew. Energy. 2021, 177, 1321-32.
39. Wang, C.; Liu, J.; Shen, J.; et al. Effects of biochar amendment on net greenhouse gas emissions and soil fertility in a double rice cropping system: a 4-year field experiment. Agr. Ecosyst. Environ. 2018, 262, 83-96.
40. Wang, X.; Li, Z.; Bai, X.; et al. Study on improving anaerobic co-digestion of cow manure and corn straw by fruit and vegetable waste: Methane production and microbial community in CSTR process. Bioresour. Technol. 2018, 249, 290-7.
41. Wang, D.; Yuan, W.; Xie, Y.; et al. Simulating CH4 emissions from MSW landfills in China from 2003 to 2042 using IPCC and LandGEM models. Heliyon 2023, 9, e22943.
42. Cai, B.; Lou, Z.; Wang, J.; et al. CH4 mitigation potentials from China landfills and related environmental co-benefits. Sci. Adv. 2018, 4, eaar8400.
43. Chen, Y.; Qiu, R.; Zheng, M.; Ni, B. J.; Guo, H. G. Spatiotemporal evolution and driver analysis of wastewater greenhouse gas emissions in Chinese mainland: insights and future trends. Environ. Res. 2025, 283, 122169.
44. Ma, Z.; Feng, P.; Gao, Q.; Lu, Y.; Liu, J.; Li, W. CH4 emissions and reduction potential in wastewater treatment in China. Adv. Clim. Chang. Res. 2015, 6, 216-24.
45. Wang, D.; Ye, W.; Wu, G.; et al. Greenhouse gas emissions from municipal wastewater treatment facilities in China from 2006 to 2019. Sci. Data. 2022, 9, 317.
46. Zhao, X.; Jin, X. K.; Guo, W.; et al. China's urban methane emissions from municipal wastewater treatment plant. Earth's. Future. 2019, 7, 480-90.
47. Zhao, H.; Jia, X.; Yang, J.; Wu, Y.; Wu, X.; Du, L. Spatiotemporal variations and influencing factors of methane emissions from livestock in China: a spatial econometric analysis. Sci. Total. Environ. 2024, 931, 173010.
48. Lan, H.; Brika, S. K.; Huseyn, A. A.; Shamshieva, N.; Du, L. Assessing spatiotemporal trends and drivers of livestock methane emissions in China: a spatial econometric analysis. Ecol. Ind. 2025, 178, 113992.
49. Du, M.; Kang, X.; Liu, Q.; et al. City-level livestock methane emissions in China from 2010 to 2020. Sci. Data. 2024, 11, 251.
50. Wang, K.; Zhang, J.; Cai, B.; Liang, S. Estimation of Chinese city-level anthropogenic methane emissions in 2015. Resour. Conserv. Recy. 2021, 175, 105861.
51. Lu, C.; Jiang, W.; Gao, W.; He, G.; Sun, C. Spatial-temporal characteristics of methane emission in shandong, China, based on an updated comprehensive methane emission inventory in 2020. Atmos. Pollut. Res. 2024, 15, 102044.