REFERENCES
1. Strebhardt K, Ullrich A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer. 2008;8:473-80.
2. Huang Z, Braunstein Z, Chen J, et al. Precision medicine in rheumatic diseases: unlocking the potential of antibody-drug conjugates. Pharmacol Rev. 2024;76:579-98.
3. Theocharopoulos C, Lialios PP, Gogas H, Ziogas DC. An overview of antibody-drug conjugates in oncological practice. Ther Adv Med Oncol. 2020;12:1758835920962997.
4. Drago JZ, Modi S, Chandarlapaty S. Unlocking the potential of antibody-drug conjugates for cancer therapy. Nat Rev Clin Oncol. 2021;18:327-44.
5. Rahat MA, Shakya J. Parallel aspects of the microenvironment in cancer and autoimmune disease. Mediators Inflamm. 2016;2016:4375120.
6. Yasunaga M. Antibody therapeutics and immunoregulation in cancer and autoimmune disease. Semin Cancer Biol. 2020;64:1-12.
7. Rogovskii V. Cancer and autoimmune diseases as two sides of chronic inflammation and the method of therapy. Curr Cancer Drug Targets. 2024;24:1089-103.
8. van der Vlist M, Kuball J, Radstake TR, Meyaard L. Immune checkpoints and rheumatic diseases: what can cancer immunotherapy teach us? Nat Rev Rheumatol. 2016;12:593-604.
9. Stark AK, Sriskantharajah S, Hessel EM, Okkenhaug K. PI3K inhibitors in inflammation, autoimmunity and cancer. Curr Opin Pharmacol. 2015;23:82-91.
10. Wei XH, Liu YY. Potential applications of JAK inhibitors, clinically approved drugs against autoimmune diseases, in cancer therapy. Front Pharmacol. 2023;14:1326281.
11. Kruk L, Mamtimin M, Braun A, et al. Inflammatory networks in renal cell carcinoma. Cancers. 2023;15:2212.
12. Fan S, He L, Sang D. Combination therapy with antibody-drug conjugate RC48 (disitamab vedotin) and zimberelimab (PD-1 inhibitor) successfully controlled recurrent HER2-positive breast cancer resistant to trastuzumab emtansine: a case report. Oncol Lett. 2023;26:359.
13. Appleton E, Hassan J, Chan Wah Hak C, et al. Kickstarting immunity in cold tumours: localised tumour therapy combinations with immune checkpoint blockade. Front Immunol. 2021;12:754436.
14. Bodansky A, Yu DJ, Rallistan A, et al. Unveiling the proteome-wide autoreactome enables enhanced evaluation of emerging CAR T cell therapies in autoimmunity. J Clin Invest. 2024;134:e180012.
15. Kuroki K, Tsuchiya N, Tsao BP, et al. Polymorphisms of human CD19 gene: possible association with susceptibility to systemic lupus erythematosus in Japanese. Genes Immun. 2002;3:S21-30.
16. Pecher AC, Hensen L, Klein R, et al. CD19-targeting CAR T cells for myositis and interstitial lung disease associated with antisynthetase syndrome. JAMA. 2023;329:2154-62.
17. Müller F, Boeltz S, Knitza J, et al. CD19-targeted CAR T cells in refractory antisynthetase syndrome. Lancet. 2023;401:815-8.
19. Tacchetti P, Talarico M, Barbato S, et al. Antibody-drug conjugates, bispecific antibodies and CAR-T cells therapy in multiple myeloma. Expert Rev Anticancer Ther. 2024;24:379-95.
20. Herrera AF, Molina A. Investigational antibody-drug conjugates for treatment of B-lineage malignancies. Clin Lymphoma Myeloma Leuk. 2018;18:452-68.e4.
21. Munshi NC, Anderson LD Jr, Shah N, et al. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N Engl J Med. 2021;384:705-16.
22. Dumontet C, Reichert JM, Senter PD, Lambert JM, Beck A. Antibody-drug conjugates come of age in oncology. Nat Rev Drug Discov. 2023;22:641-61.
23. Shastry M, Gupta A, Chandarlapaty S, Young M, Powles T, Hamilton E. Rise of antibody-drug conjugates: the present and future. Am Soc Clin Oncol Educ Book. 2023;43:e390094.
24. U.S. food and drug administration. FDA approves datopotamab deruxtecan-dlnk for unresectable or metastatic, HR-positive, HER2-negative breast cancer. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-datopotamab-deruxtecan-dlnk-unresectable-or-metastatic-hr-positive-her2-negative-breast. [Last accessed on 24 Jun 2025].
25. Long P, Li S, Pan L, Wang Y, Chen W, Wang X. Cardiovascular adverse events associated with antibody-drug conjugates (ADCs): a pharmacovigilance study based on the FAERS database. Front Pharmacol. 2024;15:1378010.
26. Phuna ZX, Kumar PA, Haroun E, Dutta D, Lim SH. Antibody-drug conjugates: principles and opportunities. Life Sci. 2024;347:122676.
27. Khongorzul P, Ling CJ, Khan FU, Ihsan AU, Zhang J. Antibody-drug conjugates: a comprehensive review. Mol Cancer Res. 2020;18:3-19.
28. De Cecco M, Galbraith DN, McDermott LL. What makes a good antibody-drug conjugate? Expert Opin Biol Ther. 2021;21:841-7.
29. Sasso JM, Tenchov R, Bird R, et al. The evolving landscape of antibody-drug conjugates: in depth analysis of recent research progress. Bioconjug Chem. 2023;34:1951-2000.
30. Fu Z, Li S, Han S, et al. Antibody drug conjugate: the “biological missile” for targeted cancer therapy. Sig Transduct Target Ther. 2022;7:93.
31. Jeffrey SC, Andreyka JB, Bernhardt SX, et al. Development and properties of beta-glucuronide linkers for monoclonal antibody-drug conjugates. Bioconjug Chem. 2006;17:831-40.
32. Dan N, Setua S, Kashyap VK, et al. Antibody-drug conjugates for cancer therapy: chemistry to clinical implications. Pharmaceuticals. 2018;11:32.
33. Hafeez U, Parakh S, Gan HK, Scott AM. Antibody-drug conjugates for cancer therapy. Molecules. 2020;25:4764.
34. Kennedy L, Sandhu JK, Harper ME, Cuperlovic-Culf M. Role of glutathione in cancer: from mechanisms to therapies. Biomolecules. 2020;10:1429.
35. Yaghoubi S, Karimi MH, Lotfinia M, et al. Potential drugs used in the antibody-drug conjugate (ADC) architecture for cancer therapy. J Cell Physiol. 2020;235:31-64.
36. Birrer MJ, Moore KN, Betella I, Bates RC. Antibody-drug conjugate-based therapeutics: state of the science. J Natl Cancer Inst. 2019;111:538-49.
37. Beck A, Goetsch L, Dumontet C, Corvaïa N. Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov. 2017;16:315-37.
38. Yurkovetskiy AV, Bodyak ND, Yin M, et al. Dolaflexin: a novel antibody-drug conjugate platform featuring high drug loading and a controlled bystander effect. Mol Cancer Ther. 2021;20:885-95.
39. Zhao P, Zhang Y, Li W, Jeanty C, Xiang G, Dong Y. Recent advances of antibody drug conjugates for clinical applications. Acta Pharm Sin B. 2020;10:1589-600.
40. Aggarwal D, Yang J, Salam MA, et al. Antibody-drug conjugates: the paradigm shifts in the targeted cancer therapy. Front Immunol. 2023;14:1203073.
41. Kovtun YV, Audette CA, Mayo MF, et al. Antibody-maytansinoid conjugates designed to bypass multidrug resistance. Cancer Res. 2010;70:2528-37.
42. Jia G, Jiang Y, Li X. Targeted drug conjugates in cancer therapy: challenges and opportunities. Pharm Sci Adv. 2024;2:100048.
43. Meddahi A, Lemdjabar H, Caruelle JP, Barritault D, Hornebeck W. FGF protection and inhibition of human neutrophil elastase by carboxymethyl benzylamide sulfonate dextran derivatives. Int J Biol Macromol. 1996;18:141-5.
44. Kawato Y, Aonuma M, Hirota Y, Kuga H, Sato K. Intracellular roles of SN-38, a metabolite of the camptothecin derivative CPT-11, in the antitumor effect of CPT-11. Cancer Res. 1991;51:4187-91.
45. Donaghy H. Effects of antibody, drug and linker on the preclinical and clinical toxicities of antibody-drug conjugates. MAbs. 2016;8:659-71.
46. Dong W, Wang W, Cao C. The evolution of antibody-drug conjugates: toward accurate DAR and multi-specificity. ChemMedChem. 2024;19:e202400109.
47. Maecker H, Jonnalagadda V, Bhakta S, Jammalamadaka V, Junutula JR. Exploration of the antibody-drug conjugate clinical landscape. MAbs. 2023;15:2229101.
48. Metrangolo V, Engelholm LH. Antibody-drug conjugates: the dynamic evolution from conventional to next-generation constructs. Cancers. 2024;16:447.
50. He L, Wang L, Wang Z, et al. Immune modulating antibody-drug conjugate (IM-ADC) for cancer immunotherapy. J Med Chem. 2021;64:15716-26.
51. Kesireddy M, Kothapalli SR, Gundepalli SG, Asif S. A review of the current FDA-approved antibody-drug conjugates: landmark clinical trials and indications. Pharmaceut Med. 2024;38:39-54.
52. Yilmaz M, Richard S, Jabbour E. The clinical potential of inotuzumab ozogamicin in relapsed and refractory acute lymphocytic leukemia. Ther Adv Hematol. 2015;6:253-61.
53. Bross PF, Beitz J, Chen G, et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res. 2001;7:1490-6.
54. Giles FJ, Kantarjian HM, Kornblau SM, et al. Mylotarg (gemtuzumab ozogamicin) therapy is associated with hepatic venoocclusive disease in patients who have not received stem cell transplantation. Cancer. 2001;92:406-13.
55. Petersdorf SH, Kopecky KJ, Slovak M, et al. A phase 3 study of gemtuzumab ozogamicin during induction and postconsolidation therapy in younger patients with acute myeloid leukemia. Blood. 2013;121:4854-60.
56. Kantarjian HM, Su Y, Jabbour EJ, et al. Patient-reported outcomes from a phase 3 randomized controlled trial of inotuzumab ozogamicin versus standard therapy for relapsed/refractory acute lymphoblastic leukemia. Cancer. 2018;124:2151-60.
57. Kantarjian HM, DeAngelo DJ, Stelljes M, et al. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N Engl J Med. 2016;375:740-53.
58. Esapa B, Jiang J, Cheung A, Chenoweth A, Thurston DE, Karagiannis SN. Target antigen attributes and their contributions to clinically approved antibody-drug conjugates (ADCs) in haematopoietic and solid cancers. Cancers. 2023;15:1845.
59. Sehn LH, Herrera AF, Flowers CR, et al. Polatuzumab vedotin in relapsed or refractory diffuse large B-cell lymphoma. J Clin Oncol. 2020;38:155-65.
60. Mirzaei Y, Hussein Mer A, Fattah Maran B, et al. Clinical and preclinical advances in PSMA-directed antibody-drug conjugates (ADCs): current status and hope for the future. Bioorg Chem. 2024;153:107803.
61. Caimi PF, Ai W, Alderuccio JP, et al. Loncastuximab tesirine in relapsed or refractory diffuse large B-cell lymphoma (LOTIS-2): a multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol. 2021;22:790-800.
62. Horwitz S, O’Connor OA, Pro B, et al. The ECHELON-2 trial: 5-year results of a randomized, phase III study of brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma. Ann Oncol. 2022;33:288-98.
63. Lambert JM, Morris CQ. Antibody-drug conjugates (ADCs) for personalized treatment of solid tumors: a review. Adv Ther. 2017;34:1015-35.
64. Bardia A, Mayer IA, Vahdat LT, et al. Sacituzumab govitecan-hziy in refractory metastatic triple-negative breast cancer. N Engl J Med. 2019;380:741-51.
65. Nucera S, Conti C, Martorana F, Wilson B, Genta S. Antibody-drug conjugates to promote immune surveillance: lessons learned from breast cancer. Biomedicines. 2024;12:1491.
66. Nader-Marta G, Molinelli C, Debien V, et al. Antibody-drug conjugates: the evolving field of targeted chemotherapy for breast cancer treatment. Ther Adv Med Oncol. 2023;15:17588359231183679.
67. Corti C, Giugliano F, Nicolò E, Ascione L, Curigliano G. Antibody-drug conjugates for the treatment of breast cancer. Cancers. 2021;13:2898.
68. Chen YF, Xu YY, Shao ZM, Yu KD. Resistance to antibody-drug conjugates in breast cancer: mechanisms and solutions. Cancer Commun. 2023;43:297-337.
69. Belluomini L, Sposito M, Avancini A, et al. Unlocking new horizons in small-cell lung cancer treatment: the onset of antibody-drug conjugates. Cancers. 2023;15:5368.
70. Johnson ML, Zvirbule Z, Laktionov K, et al. Rovalpituzumab tesirine as a maintenance therapy after first-line platinum-based chemotherapy in patients with extensive-stage-SCLC: results from the phase 3 MERU study. J Thorac Oncol. 2021;16:1570-81.
71. Rudin CM, Pietanza MC, Bauer TM, et al. Safety and efficacy of single-agent rovalpituzumab tesirine (SC16LD6.5), a delta-like protein 3 (DLL3)-targeted antibody-drug conjugate (ADC) in recurrent or refractory small cell lung cancer (SCLC). JCO. 2016;34:LBA8505.
72. Rojo F, Corassa M, Mavroudis D, et al. International real-world study of DLL3 expression in patients with small cell lung cancer. Lung Cancer. 2020;147:237-43.
73. Khosravanian MJ, Mirzaei Y, Mer AH, et al. Nectin-4-directed antibody-drug conjugates (ADCs): spotlight on preclinical and clinical evidence. Life Sci. 2024;352:122910.
74. Sarfaty M, Rosenberg JE. Antibody-drug conjugates in urothelial carcinomas. Curr Oncol Rep. 2020;22:13.
75. D’Cunha R, Kupper H, Arikan D, et al. A first-in-human study of the novel immunology antibody-drug conjugate, ABBV-3373, in healthy participants. Br J Clin Pharmacol. 2024;90:189-99.
76. Hobson AD, McPherson MJ, Hayes ME, et al. Discovery of ABBV-3373, an anti-TNF glucocorticoid receptor modulator immunology antibody drug conjugate. J Med Chem. 2022;65:15893-934.
77. Hobson AD, McPherson MJ, Hayes ME, et al. Correction to “Discovery of ABBV-3373, an anti-TNF glucocorticoid receptor modulator immunology antibody drug conjugate”. J Med Chem. 2023;66:6010.
78. Ichikawa S, Fukuhara N, Saito K, et al. Successful treatment of methotrexate-associated classical Hodgkin lymphoma with brentuximab vedotin-combined chemotherapy: a case series. Int J Hematol. 2020;111:667-72.
79. Matsuhashi M, Nishida K, Nasu Y, et al. SAT0010 anti-CD30 immunotherapy ameliorates bone and cartilage destruction in experimental model of rheumatoid arthritis in mice. Ann Rheum Dis. 2020;79:935.
80. Matsuhashi M, Nishida K, Sakamoto M, et al. CD30-targeted therapy induces apoptosis of inflammatory cytokine-stimulated synovial fibroblasts and ameliorates collagen antibody-induced arthritis in mice. Inflamm Res. 2022;71:215-26.
81. van Roon JA, Bijlsma JW, van de Winkel JG, Lafeber FP. Depletion of synovial macrophages in rheumatoid arthritis by an anti-FcgammaRI-calicheamicin immunoconjugate. Ann Rheum Dis. 2005;64:865-70.
82. Furie R, Werth VP, Merola JF, et al. Monoclonal antibody targeting BDCA2 ameliorates skin lesions in systemic lupus erythematosus. J Clin Invest. 2019;129:1359-71.
83. Chaichian Y, Wallace DJ, Weisman MH. A promising approach to targeting type 1 IFN in systemic lupus erythematosus. J Clin Invest. 2019;129:958-61.
84. Sim TM, Ong SJ, Mak A, Tay SH. Type I interferons in systemic lupus erythematosus: a journey from bench to bedside. Int J Mol Sci. 2022;23:2505.
85. Yohannan B, Rios A, Buja M. Durable remission in hodgkin lymphoma treated with one cycle of bleomycin, vinblastine, dacarbazine and two doses of nivolumab and brentuximab vedotin. J Hematol. 2022;11:154-8.
86. ClinicalTrials.gov. Brentuximab vedotin for systemic sclerosis (BRAVOS). Available from: https://clinicaltrials.gov/study/NCT03222492?cond=NCT03222492&rank=1&tab=results. [Last accessed on 24 Jun 2025].
87. Fernández-Codina A, Nevskaya T, Baron M, et al. Brentuximab vedotin for skin involvement in refractory diffuse cutaneous systemic sclerosis, an open-label trial. Rheumatology. 2025;64:1476-81.
88. Graversen JH, Svendsen P, Dagnæs-Hansen F, et al. Targeting the hemoglobin scavenger receptor CD163 in macrophages highly increases the anti-inflammatory potency of dexamethasone. Mol Ther. 2012;20:1550-8.
89. Asgeirsdóttir SA, Kok RJ, Everts M, Meijer DK, Molema G. Delivery of pharmacologically active dexamethasone into activated endothelial cells by dexamethasone-anti-E-selectin immunoconjugate. Biochem Pharmacol. 2003;65:1729-39.
90. Yu S, Pearson AD, Lim RK, et al. Targeted delivery of an anti-inflammatory PDE4 inhibitor to immune cells via an antibody-drug conjugate. Mol Ther. 2016;24:2078-89.
91. Kern JC, Dooney D, Zhang R, et al. Novel phosphate modified cathepsin B linkers: improving aqueous solubility and enhancing payload scope of ADCs. Bioconjug Chem. 2016;27:2081-8.
92. Brandish PE, Palmieri A, Antonenko S, et al. Development of anti-CD74 antibody-drug conjugates to target glucocorticoids to immune cells. Bioconjug Chem. 2018;29:2357-69.
93. Mahalingaiah PK, Ciurlionis R, Durbin KR, et al. Potential mechanisms of target-independent uptake and toxicity of antibody-drug conjugates. Pharmacol Ther. 2019;200:110-25.
94. Long R, Zuo H, Tang G, et al. Antibody-drug conjugates in cancer therapy: applications and future advances. Front Immunol. 2025;16:1516419.
95. Guo J, Kumar S, Chipley M, et al. Characterization and higher-order structure assessment of an interchain cysteine-based ADC: impact of drug loading and distribution on the mechanism of aggregation. Bioconjug Chem. 2016;27:604-15.
96. Khera E, Thurber GM. Pharmacokinetic and immunological considerations for expanding the therapeutic window of next-generation antibody-drug conjugates. BioDrugs. 2018;32:465-80.
97. Géraud A, Gougis P, de Nonneville A, et al. Pharmacology and pharmacokinetics of antibody-drug conjugates, where do we stand? Cancer Treat Rev. 2025;135:102922.
98. Zhou S, Kuno T, Miyagi E, Wright JD, Takagi H, Suzuki Y. Tolerability and toxicity profiles of antibody-drug conjugates for the treatment of malignant neoplasms: a meta-analysis of randomized clinical trials. JCO. 2023;41:e15011.
99. Suzuki Y, Zhou S, Ota Y, et al. Toxicity profiles of antibody-drug conjugates for anticancer treatment: a systematic review and meta-analysis. JNCI Cancer Spectr. 2023;7:pkad069.
100. Eaton JS, Miller PE, Mannis MJ, Murphy CJ. Ocular adverse events associated with antibody-drug conjugates in human clinical trials. J Ocul Pharmacol Ther. 2015;31:589-604.
101. Hinrichs MJ, Dixit R. Antibody drug conjugates: nonclinical safety considerations. AAPS J. 2015;17:1055-64.
102. Xiang Y, Zhang M, Jiang D, Su Q, Shi J. The role of inflammation in autoimmune disease: a therapeutic target. Front Immunol. 2023;14:1267091.
103. Pal LB, Bule P, Khan W, Chella N. An overview of the development and preclinical evaluation of antibody-drug conjugates for non-oncological applications. Pharmaceutics. 2023;15:1807.
104. Wemlinger SM, Cambier JC. Therapeutic tactics for targeting B lymphocytes in autoimmunity and cancer. Eur J Immunol. 2024;54:e2249947.
105. Nguyen TD, Bordeau BM, Balthasar JP. Mechanisms of ADC toxicity and strategies to increase ADC tolerability. Cancers. 2023;15:713.
106. Buttgereit F, Aelion J, Rojkovich B, et al. Efficacy and safety of ABBV-3373, a novel anti-tumor necrosis factor glucocorticoid receptor modulator antibody-drug conjugate, in adults with moderate-to-severe rheumatoid arthritis despite methotrexate therapy: a randomized, double-blind, active-controlled proof-of-concept phase IIa trial. Arthritis Rheumatol. 2023;75:879-89.
107. Dixit T, Vaidya A, Ravindran S. Therapeutic potential of antibody-drug conjugates possessing bifunctional anti-inflammatory action in the pathogenies of rheumatoid arthritis. Arthritis Res Ther. 2024;26:216.
108. Jiang M, Li Q, Xu B. Spotlight on ideal target antigens and resistance in antibody-drug conjugates: strategies for competitive advancement. Drug Resist Updat. 2024;75:101086.
109. Chang HL, Schwettmann B, McArthur HL, Chan IS. Antibody-drug conjugates in breast cancer: overcoming resistance and boosting immune response. J Clin Invest. 2023;133:e172156.
110. Khoury R, Saleh K, Khalife N, et al. Mechanisms of resistance to antibody-drug conjugates. Int J Mol Sci. 2023;24:9674.
111. Loganzo F, Tan X, Sung M, et al. Tumor cells chronically treated with a trastuzumab-maytansinoid antibody-drug conjugate develop varied resistance mechanisms but respond to alternate treatments. Mol Cancer Ther. 2015;14:952-63.
112. Gebhart G, Lamberts LE, Wimana Z, et al. Molecular imaging as a tool to investigate heterogeneity of advanced HER2-positive breast cancer and to predict patient outcome under trastuzumab emtansine (T-DM1): the ZEPHIR trial. Ann Oncol. 2016;27:619-24.
113. Abelman RO, Wu B, Spring LM, Ellisen LW, Bardia A. Mechanisms of resistance to antibody-drug conjugates. Cancers. 2023;15:1278.
114. Scaltriti M, Rojo F, Ocaña A, et al. Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast cancer. J Natl Cancer Inst. 2007;99:628-38.
115. Zhao Y, Short NJ, Kantarjian HM, et al. Genomic determinants of response and resistance to inotuzumab ozogamicin in B-cell ALL. Blood. 2024;144:61-73.
116. Kalim M, Chen J, Wang S, et al. Intracellular trafficking of new anticancer therapeutics: antibody-drug conjugates. Drug Des Devel Ther. 2017;11:2265-76.
117. Sung M, Tan X, Lu B, et al. Caveolae-mediated endocytosis as a novel mechanism of resistance to trastuzumab emtansine (T-DM1). Mol Cancer Ther. 2018;17:243-53.
118. Ríos-Luci C, García-Alonso S, Díaz-Rodríguez E, et al. Resistance to the antibody-drug conjugate T-DM1 is based in a reduction in lysosomal proteolytic activity. Cancer Res. 2017;77:4639-51.
119. Tomabechi R, Kishimoto H, Sato T, et al. SLC46A3 is a lysosomal proton-coupled steroid conjugate and bile acid transporter involved in transport of active catabolites of T-DM1. PNAS Nexus. 2022;1:pgac063.
120. Yu M, Ocana A, Tannock IF. Reversal of ATP-binding cassette drug transporter activity to modulate chemoresistance: why has it failed to provide clinical benefit? Cancer Metastasis Rev. 2013;32:211-27.
121. Lambert JM, Chari RV. Ado-trastuzumab Emtansine (T-DM1): an antibody-drug conjugate (ADC) for HER2-positive breast cancer. J Med Chem. 2014;57:6949-64.
122. Li G, Guo J, Shen BQ, et al. Mechanisms of acquired resistance to trastuzumab emtansine in breast cancer cells. Mol Cancer Ther. 2018;17:1441-53.
123. Wang L, Wang Q, Gao M, et al. STAT3 activation confers trastuzumab-emtansine (T-DM1) resistance in HER2-positive breast cancer. Cancer Sci. 2018;109:3305-15.
124. Moore J, Seiter K, Kolitz J, et al. A phase II study of Bcl-2 antisense (oblimersen sodium) combined with gemtuzumab ozogamicin in older patients with acute myeloid leukemia in first relapse. Leuk Res. 2006;30:777-83.
125. Golfier S, Kopitz C, Kahnert A, et al. Anetumab ravtansine: a novel mesothelin-targeting antibody-drug conjugate cures tumors with heterogeneous target expression favored by bystander effect. Mol Cancer Ther. 2014;13:1537-48.
126. Mosele M, Lusque A, Dieras V, et al. LBA1 unraveling the mechanism of action and resistance to trastuzumab deruxtecan (T-DXd): biomarker analyses from patients from DAISY trial. Ann Oncol. 2022;33:S123.
127. Pizano-Martinez O, Mendieta-Condado E, Vázquez-Del Mercado M, et al. Anti-drug antibodies in the biological therapy of autoimmune rheumatic diseases. J Clin Med. 2023;12:3271.
128. Carrasco-Triguero M, Dere RC, Milojic-Blair M, et al. Immunogenicity of antibody-drug conjugates: observations across 8 molecules in 11 clinical trials. Bioanalysis. 2019;11:1555-68.
129. Zhao M, Jiang J, Zhao M, Chang C, Wu H, Lu Q. The application of single-cell RNA sequencing in studies of autoimmune diseases: a comprehensive review. Clin Rev Allergy Immunol. 2021;60:68-86.
130. Plückthun A. Designed ankyrin repeat proteins (DARPins): binding proteins for research, diagnostics, and therapy. Annu Rev Pharmacol Toxicol. 2015;55:489-511.
131. Deonarain MP, Yahioglu G, Stamati I, et al. Small-format drug conjugates: a viable alternative to ADCs for solid tumours? Antibodies. 2018;7:16.
132. Liu Z, Gunasekaran K, Wang W, et al. Asymmetrical Fc engineering greatly enhances antibody-dependent cellular cytotoxicity (ADCC) effector function and stability of the modified antibodies. J Biol Chem. 2014;289:3571-90.
133. Nolting B. Linker technologies for antibody-drug conjugates. In: Ducry L, Editor. Antibody-drug conjugates. Totowa, NJ: Humana Press; 2013. pp. 71-100.
134. Ye J, Cui H, Liu E, et al. Temperature switchable linkers suitable for triggered drug release in cancer thermo-chemotherapy. Int J Pharm. 2024;666:124757.
135. Li J, Xiao D, Xie F, et al. Novel antibody-drug conjugate with UV-controlled cleavage mechanism for cytotoxin release. Bioorg Chem. 2021;111:104475.
137. Andreev J, Thambi N, Perez Bay AE, et al. Bispecific antibodies and antibody-drug conjugates (ADCs) bridging HER2 and prolactin receptor improve efficacy of HER2 ADCs. Mol Cancer Ther. 2017;16:681-93.
138. Luo M, Wang X, Yu G, Ji J, Li L, Song F. Development of a bispecific antibody-drug conjugate targeting EpCAM and CLDN3 for the treatment of multiple solid tumors. Exp Hematol Oncol. 2025;14:33.
139. Yamazaki CM, Yamaguchi A, Anami Y, et al. Antibody-drug conjugates with dual payloads for combating breast tumor heterogeneity and drug resistance. Nat Commun. 2021;12:3528.
140. Kumar A, Kinneer K, Masterson L, et al. Synthesis of a heterotrifunctional linker for the site-specific preparation of antibody-drug conjugates with two distinct warheads. Bioorg Med Chem Lett. 2018;28:3617-21.
141. Jhaveri K, Han H, Dotan E, et al. 460MO preliminary results from a phase I study using the bispecific, human epidermal growth factor 2 (HER2)-targeting antibody-drug conjugate (ADC) zanidatamab zovodotin (ZW49) in solid cancers. Ann Oncol. 2022;33:S749-50.
142. Ma Y, Huang Y, Zhao Y, et al. BL-B01D1, a first-in-class EGFR-HER3 bispecific antibody-drug conjugate, in patients with locally advanced or metastatic solid tumours: a first-in-human, open-label, multicentre, phase 1 study. Lancet Oncol. 2024;25:901-11.
143. Nilchan N, Li X, Pedzisa L, Nanna AR, Roush WR, Rader C. Dual-mechanistic antibody-drug conjugate via site-specific selenocysteine/cysteine conjugation. Antib Ther. 2019;2:71-8.
144. Wang AJ, Gao Y, Shi YY, Dai MY, Cai HB. A review of recent advances on single use of antibody-drug conjugates or combination with tumor immunology therapy for gynecologic cancer. Front Pharmacol. 2022;13:1093666.
145. Nicolò E, Giugliano F, Ascione L, et al. Combining antibody-drug conjugates with immunotherapy in solid tumors: current landscape and future perspectives. Cancer Treat Rev. 2022;106:102395.
146. Müller P, Kreuzaler M, Khan T, et al. Trastuzumab emtansine (T-DM1) renders HER2+ breast cancer highly susceptible to CTLA-4/PD-1 blockade. Sci Transl Med. 2015;7:315ra188.
147. Gerber HP, Sapra P, Loganzo F, May C. Combining antibody-drug conjugates and immune-mediated cancer therapy: what to expect? Biochem Pharmacol. 2016;102:1-6.
148. Wei Q, Li P, Yang T, et al. The promise and challenges of combination therapies with antibody-drug conjugates in solid tumors. J Hematol Oncol. 2024;17:1.
149. Sabbaghi M, Gil-Gómez G, Guardia C, et al. Defective cyclin B1 induction in trastuzumab-emtansine (T-DM1) acquired resistance in HER2-positive breast cancer. Clin Cancer Res. 2017;23:7006-19.
150. Witkiewicz AK, Cox D, Knudsen ES. CDK4/6 inhibition provides a potent adjunct to Her2-targeted therapies in preclinical breast cancer models. Genes Cancer. 2014;5:261-72.
151. Zoeller JJ, Vagodny A, Taneja K, et al. Neutralization of BCL-2/XL enhances the cytotoxicity of T-DM1 in vivo. Mol Cancer Ther. 2019;18:1115-26.
152. Patel TA, Ensor JE, Creamer SL, et al. A randomized, controlled phase II trial of neoadjuvant ado-trastuzumab emtansine, lapatinib, and nab-paclitaxel versus trastuzumab, pertuzumab, and paclitaxel in HER2-positive breast cancer (TEAL study). Breast Cancer Res. 2019;21:100.
153. Martin M, Fumoleau P, Dewar JA, et al. Trastuzumab emtansine (T-DM1) plus docetaxel with or without pertuzumab in patients with HER2-positive locally advanced or metastatic breast cancer: results from a phase Ib/IIa study. Ann Oncol. 2016;27:1249-56.
154. Kim YJ, Li W, Zhelev DV, Mellors JW, Dimitrov DS, Baek DS. Chimeric antigen receptor-T cells are effective against CEACAM5 expressing non-small cell lung cancer cells resistant to antibody-drug conjugates. Front Oncol. 2023;13:1124039.
155. Zhao L. Defeating cancer with armed antibodies and genetically modified immune cells. HSET. 2025;129:57-66.
156. OncLive. BiTEs, CAR T-cell therapy, and ADCs offer variety of lymphoma treatment options, but questions remain. Available from: https://www.onclive.com/view/bites-car-t-cell-therapy-and-adcs-offer-variety-of-lymphoma-treatment-options-but-questions-remain. [Last accessed on 24 Jun 2025].
157. Wang C, Zhang Y, Chen W, Wu Y, Xing D. New-generation advanced PROTACs as potential therapeutic agents in cancer therapy. Mol Cancer. 2024;23:110.
158. Cao W, Li R, Pei X, et al. Antibody-siRNA conjugates (ARC): emerging siRNA drug formulation. Med Drug Discov. 2022;15:100128.
159. Wang RE, Liu T, Wang Y, et al. An immunosuppressive antibody-drug conjugate. J Am Chem Soc. 2015;137:3229-32.
160. Siwe GT, Fajemisin EA, Mugeri M, Naran K, Barth S. Revisiting immunotherapeutic strategies for the management of atopic dermatitis. Explor Asthma Allergy. 2024;2:373-98.
161. Everts M, Kok RJ, Asgeirsdóttir SA, et al. Selective intracellular delivery of dexamethasone into activated endothelial cells using an E-selectin-directed immunoconjugate. J Immunol. 2002;168:883-9.
162. Khuat TT, Bassett R, Otte E, Grevis-james A, Gabrys B. Applications of machine learning in antibody discovery, process development, manufacturing and formulation: current trends, challenges, and opportunities. Comput Chem Eng. 2024;182:108585.
163. Zheng J, Wang Y, Liang Q, Cui L, Wang L. The application of machine learning on antibody discovery and optimization. Molecules. 2024;29:5923.
164. Abramson J, Adler J, Dunger J, et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature. 2024;630:493-500.
165. Wang J, Watson JL, Lisanza SL. Protein design using structure-prediction networks: AlphaFold and RoseTTAFold as protein structure foundation models. Cold Spring Harb Perspect Biol. 2024;16:a041472.
166. Scheuher B, Ghusinga KR, McGirr K, et al. Towards a platform quantitative systems pharmacology (QSP) model for preclinical to clinical translation of antibody drug conjugates (ADCs). J Pharmacokinet Pharmacodyn. 2024;51:429-47.
167. Conde-Sousa E, Vale J, Feng M, et al. HEROHE challenge: predicting HER2 status in breast cancer from hematoxylin-eosin whole-slide imaging. J Imaging. 2022;8:213.
168. Howard FM, Dolezal J, Kochanny S, et al. Integration of clinical features and deep learning on pathology for the prediction of breast cancer recurrence assays and risk of recurrence. NPJ Breast Cancer. 2023;9:25.
169. Zhao S, Yan CY, Lv H, et al. Deep learning framework for comprehensive molecular and prognostic stratifications of triple-negative breast cancer. Fundam Res. 2024;4:678-89.
170. Szep M, Pintican R, Boca B, et al. Whole-tumor ADC texture analysis is able to predict breast cancer receptor status. Diagnostics. 2023;13:1414.
171. Chaunzwa TL, Hosny A, Xu Y, et al. Deep learning classification of lung cancer histology using CT images. Sci Rep. 2021;11:5471.
172. Harmon SA, Tuncer S, Sanford T, Choyke PL, Türkbey B. Artificial intelligence at the intersection of pathology and radiology in prostate cancer. Diagn Interv Radiol. 2019;25:183-8.