REFERENCES

1. Wang X, Zhang H, Chen X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist. 2019;2:141-60.

2. Ma L, Guo H, Zhao Y, et al. Liquid biopsy in cancer current: status, challenges and future prospects. Signal Transduct Target Ther. 2024;9:336.

3. Huang L, Rong Y, Tang X, Yi K, Wu J, Wang F. Circular RNAs are promising biomarkers in liquid biopsy for the diagnosis of non-small cell lung cancer. Front Mol Biosci. 2021;8:625722.

4. Batool SM, Yekula A, Khanna P, et al. The liquid biopsy consortium: challenges and opportunities for early cancer detection and monitoring. Cell Rep Med. 2023;4:101198.

5. Wen G, Zhou T, Gu W. The potential of using blood circular RNA as liquid biopsy biomarker for human diseases. Protein Cell. 2021;12:911-46.

6. Zhang Y, Wang Y, Su X, Wang P, Lin W. The value of circulating circular RNA in cancer diagnosis, monitoring, prognosis, and guiding treatment. Front Oncol. 2021;11:736546.

7. Wang S, Zhang K, Tan S, et al. Circular RNAs in body fluids as cancer biomarkers: the new frontier of liquid biopsies. Mol Cancer. 2021;20:13.

8. Babin L, Andraos E, Fuchs S, Pyronnet S, Brunet E, Meggetto F. From circRNAs to fusion circRNAs in hematological malignancies. JCI Insight. 2021;6:e151513.

9. Hua J, Wang Z, Cheng X, Dai J, Zhao P. Circular RNAs modulate cancer drug resistance: advances and challenges. Cancer Drug Resist. 2025;8:17.

10. Wu X, Shi M, Lian Y, Zhang H. Exosomal circRNAs as promising liquid biopsy biomarkers for glioma. Front Immunol. 2023;14:1039084.

11. Garlapati P, Ling J, Chiao PJ, Fu J. Circular RNAs regulate cancer-related signaling pathways and serve as potential diagnostic biomarkers for human cancers. Cancer Cell Int. 2021;21:317.

12. Choi SS, Kim SE, Oh SY, Ahn YH. Clinical implications of circulating circular RNAs in lung cancer. Biomedicines. 2022;10:871.

13. Li F, Yang Q, He AT, Yang BB. Circular RNAs in cancer: limitations in functional studies and diagnostic potential. Semin Cancer Biol. 2021;75:49-61.

14. Ghani MU, Du L, Moqbel AQ, et al. Exosomal ncRNAs in liquid biopsy: a new paradigm for early cancer diagnosis and monitoring. Front Oncol. 2025;15:1615433.

15. Liu XY, Zhang Q, Guo J, et al. The role of circular RNAs in the drug resistance of cancers. Front Oncol. 2021;11:790589.

16. Kundu I, Varshney S, Karnati S, Naidu S. The multifaceted roles of circular RNAs in cancer hallmarks: from mechanisms to clinical implications. Mol Ther Nucleic Acids. 2024;35:102286.

17. Zhang Q, Wang W, Zhou Q, et al. Roles of circRNAs in the tumour microenvironment. Mol Cancer. 2020;19:14.

18. Liu W, Niu J, Huo Y, et al. Role of circular RNAs in cancer therapy resistance. Mol Cancer. 2025;24:55.

19. Rochow H, Franz A, Jung M, et al. Instability of circular RNAs in clinical tissue samples impairs their reliable expression analysis using RT-qPCR: from the myth of their advantage as biomarkers to reality. Theranostics. 2020;10:9268-79.

20. Radanova M, Mihaylova G, Tasinov O, et al. New circulating circular RNAs with diagnostic and prognostic potential in advanced colorectal cancer. Int J Mol Sci. 2021;22:13283.

21. Bersani F, Picca F, Morena D, et al. Exploring circular MET RNA as a potential biomarker in tumors exhibiting high MET activity. J Exp Clin Cancer Res. 2023;42:120.

22. Roy S, Kanda M, Nomura S, et al. Diagnostic efficacy of circular RNAs as noninvasive, liquid biopsy biomarkers for early detection of gastric cancer. Mol Cancer. 2022;21:42.

23. Lu S, Liang Y, Li L, et al. Inferring circRNA-drug sensitivity associations via dual hierarchical attention networks and multiple kernel fusion. BMC Genomics. 2023;24:796.

24. Pisignano G, Michael DC, Visal TH, Pirlog R, Ladomery M, Calin GA. Going circular: history, present, and future of circRNAs in cancer. Oncogene. 2023;42:2783-800.

25. Wilusz JE. Circular RNAs: unexpected outputs of many protein-coding genes. RNA Biol. 2017;14:1007-17.

26. Liu X, Zhang Y, Zhou S, Dain L, Mei L, Zhu G. Circular RNA: an emerging frontier in RNA therapeutic targets, RNA therapeutics, and mRNA vaccines. J Control Release. 2022;348:84-94.

27. Nielsen AF, Bindereif A, Bozzoni I, et al. Best practice standards for circular RNA research. Nat Methods. 2022;19:1208-20.

28. Li Q, Wang Y, Wu S, et al. CircACC1 regulates assembly and activation of AMPK complex under metabolic stress. Cell Metab. 2019;30:157-73.e7.

29. Hussen BM, Abdullah SR, Jaafar RM, et al. Circular RNAs as key regulators in cancer hallmarks: new progress and therapeutic opportunities. Crit Rev Oncol Hematol. 2025;207:104612.

30. Yang Q, Li F, He AT, Yang BB. Circular RNAs: expression, localization, and therapeutic potentials. Mol Ther. 2021;29:1683-702.

31. Zhou M, Xiao MS, Li Z, Huang C. New progresses of circular RNA biology: from nuclear export to degradation. RNA Biol. 2021;18:1365-73.

32. Hashemi M, Khosroshahi EM, Daneii P, et al. Emerging roles of CircRNA-miRNA networks in cancer development and therapeutic response. Noncoding RNA Res. 2025;10:98-115.

33. Wei Z, Shi Y, Xue C, et al. Understanding the dual roles of circHIPK3 in tumorigenesis and tumor progression. J Cancer. 2022;13:3674-86.

34. Singh DD, Yadav DK, Shin D. Non-coding RNAs in cancer therapy-induced cardiotoxicity: unlocking precision biomarkers for early detection. Cell Signal. 2025;135:111982.

35. Singh DD, Kim Y, Choi SA, Han I, Yadav DK. Clinical significance of microRNAs, long non-coding RNAs, and circRNAs in cardiovascular diseases. Cells. 2023;12:1629.

36. Liu YY, Zhang LY, Du WZ. Circular RNA circ-PVT1 contributes to paclitaxel resistance of gastric cancer cells through the regulation of ZEB1 expression by sponging miR-124-3p. Biosci Rep. 2019;39:BSR20193045.

37. Xue C, Li G, Lu J, Li L. Crosstalk between circRNAs and the PI3K/AKT signaling pathway in cancer progression. Signal Transduct Target Ther. 2021;6:400.

38. Zhao M, Lin M, Zhang Z, Ye L. Research progress of circular RNA FOXO3 in diseases (review). Glob Med Genet. 2025;12:100003.

39. Shao Y, Song Y, Xu S, Li S, Zhou H. Expression profile of circular RNAs in oral squamous cell carcinoma. Front Oncol. 2020;10:533616.

40. Yan T, Tian X, Liu F, et al. The emerging role of circular RNAs in drug resistance of non-small cell lung cancer. Front Oncol. 2022;12:1003230.

41. Chen J, Yang J, Fei X, Wang X, Wang K. CircRNA ciRS-7: a novel oncogene in multiple cancers. Int J Biol Sci. 2021;17:379-89.

42. Han D, Li J, Wang H, et al. Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression. Hepatology. 2017;66:1151-64.

43. Xia X, Li X, Li F, et al. A novel tumor suppressor protein encoded by circular AKT3 RNA inhibits glioblastoma tumorigenicity by competing with active phosphoinositide-dependent Kinase-1. Mol Cancer. 2019;18:131.

44. Xu T, Wang M, Jiang L, et al. CircRNAs in anticancer drug resistance: recent advances and future potential. Mol Cancer. 2020;19:127.

45. Zhang J, Luo Z, Zheng Y, Duan M, Qiu Z, Huang C. CircRNA as an Achilles heel of cancer: characterization, biomarker and therapeutic modalities. J Transl Med. 2024;22:752.

46. Adhit KK, Wanjari A, Menon S, Siddhaarth K. Liquid biopsy: an evolving paradigm for non-invasive disease diagnosis and monitoring in medicine. Cureus. 2023;15:e50176.

47. Wang M, Yu F, Li P, Wang K. Emerging function and clinical significance of exosomal circRNAs in cancer. Mol Ther Nucleic Acids. 2020;21:367-83.

48. Martinez-Dominguez MV, Zottel A, Šamec N, et al. Current technologies for RNA-directed liquid diagnostics. Cancers. 2021;13:5060.

49. Wang K, Bai X, Xue Y, et al. Absolute quantification of circRNA using digital reverse transcription-hyperbranched rolling circle amplification. Sens Actuators B Chem. 2023;375:132893.

50. Masante L, Susin G, Baudet M. Droplet digital PCR for the detection and quantification of bona fide CircRNAs. In: Dieterich C, Baudet M, editors. Circular RNAs. New York: Springer US; 2024. pp. 107-26.

51. Bauer-Negrini G, Cordenonsi da Fonseca G, Gottfried C, Herbert J. Usability evaluation of circRNA identification tools: development of a heuristic-based framework and analysis. Comput Biol Med. 2022;147:105785.

52. Gaffo E, Buratin A, Dal Molin A, Bortoluzzi S. Sensitive, reliable and robust circRNA detection from RNA-seq with CirComPara2. Brief Bioinform. 2022;23:bbab418.

53. Chen L, Wang C, Sun H, et al. The bioinformatics toolbox for circRNA discovery and analysis. Brief Bioinform. 2021;22:1706-28.

54. Zhang N, Wang X, Li Y, et al. Mechanisms and therapeutic implications of gene expression regulation by circRNA-protein interactions in cancer. Commun Biol. 2025;8:77.

55. Velpula T, Buddolla V. Enhancing detection and monitoring of circulating tumor cells: integrative approaches in liquid biopsy advances. J Liq Biopsy. 2025;8:100297.

56. Ren F, Fei Q, Qiu K, Zhang Y, Zhang H, Sun L. Liquid biopsy techniques and lung cancer: diagnosis, monitoring and evaluation. J Exp Clin Cancer Res. 2024;43:96.

57. Gao Y, Li C, Ji T, Yu K, Gao X. The biological function and mechanism of action of circRNA as a potential target in colorectal cancer. Crit Rev Oncol Hematol. 2025;213:104828.

58. Zhang Z, Yang T, Xiao J. Circular RNAs: promising biomarkers for human diseases. EBioMedicine. 2018;34:267-74.

59. Connal S, Cameron JM, Sala A, et al. Liquid biopsies: the future of cancer early detection. J Transl Med. 2023;21:118.

60. Feng XY, Zhu SX, Pu KJ, Huang HJ, Chen YQ, Wang WT. New insight into circRNAs: characterization, strategies, and biomedical applications. Exp Hematol Oncol. 2023;12:91.

61. Alimohammadi M, Kahkesh S, Khoshnazar SM, et al. Circular RNAs and doxorubicin resistance in cancer: molecular mechanisms and potential treatment targets. Gene. 2025;964:149636.

62. Siavashy S, Soltani M, Rahimi S, Hosseinali M, Guilandokht Z, Raahemifar K. Recent advancements in microfluidic-based biosensors for detection of genes and proteins: applications and techniques. Biosens Bioelectron X. 2024;19:100489.

63. Latifi-Pakdehi T, Khezrian A, Doosti-Irani A, Afshar S, Mahdavinezhad A. Investigating the biomarker value of circRNAs in the diagnosis of colorectal cancer: a systematic review. Discov Oncol. 2024;15:734.

64. Rashid S, Sun Y, Ali Khan Saddozai U, et al. Circulating tumor DNA and its role in detection, prognosis and therapeutics of hepatocellular carcinoma. Chin J Cancer Res. 2024;36:195-214.

65. Luo YH, Yang YP, Chien CS, et al. Circular RNA hsa_circ_0000190 facilitates the tumorigenesis and immune evasion by upregulating the expression of soluble PD-L1 in non-small-cell lung cancer. Int J Mol Sci. 2021;23:64.

66. Zeng K, He B, Yang BB, et al. The pro-metastasis effect of circANKS1B in breast cancer. Mol Cancer. 2018;17:160.

67. Wang X, Zhang H, Yang H, et al. Exosome-delivered circRNA promotes glycolysis to induce chemoresistance through the miR-122-PKM2 axis in colorectal cancer. Mol Oncol. 2020;14:539-55.

68. Huang X, Li Z, Zhang Q, et al. Circular RNA AKT3 upregulates PIK3R1 to enhance cisplatin resistance in gastric cancer via miR-198 suppression. Mol Cancer. 2019;18:71.

69. Dong ZR, Ke AW, Li T, et al. CircMEMO1 modulates the promoter methylation and expression of TCF21 to regulate hepatocellular carcinoma progression and sorafenib treatment sensitivity. Mol Cancer. 2021;20:75.

70. Salami R, Salami M, Mafi A, Vakili O, Asemi Z. Circular RNAs and glioblastoma multiforme: focus on molecular mechanisms. Cell Commun Signal. 2022;20:13.

71. Weidle UH, Birzele F. Deregulated circRNAs in epithelial ovarian cancer with activity in preclinical in vivo models: identification of targets and new modalities for therapeutic intervention. Cancer Genomics Proteomics. 2024;21:213-37.

72. Zhu Q, Zhang Y, Li M, et al. MiR-124-3p impedes the metastasis of non-small cell lung cancer via extracellular exosome transport and intracellular PI3K/AKT signaling. Biomark Res. 2023;11:1.

73. Xu A, Zhu L, Yao C, Zhou W, Guan Z. The therapeutic potential of circular RNA in triple-negative breast cancer. Cancer Drug Resist. 2024;7:13.

74. Li T, Wang WC, McAlister V, Zhou Q, Zheng X. Circular RNA in colorectal cancer. J Cell Mol Med. 2021;25:3667-79.

75. Cai X, Nie J, Chen L, Yu F. Circ_0000267 promotes gastric cancer progression via sponging MiR-503-5p and regulating HMGA2 expression. Mol Genet Genomic Med. 2020;8:e1093.

76. Han D, Li J, Wang H, et al. Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression. Hepatology. 2017;66:1151-64.

77. Kong Z, Wan X, Lu Y, et al. Circular RNA circFOXO3 promotes prostate cancer progression through sponging miR-29a-3p. J Cell Mol Med. 2020;24:799-813.

78. Yang F, Liu DY, Guo JT, et al. Circular RNA circ-LDLRAD3 as a biomarker in diagnosis of pancreatic cancer. World J Gastroenterol. 2017;23:8345-54.

79. Morena D, Picca F, Taulli R. CircNT5E/miR-422a: a new circRNA-based ceRNA network in glioblastoma. Transl Cancer Res. 2019;8:S106-9.

80. Zeng XY, Yuan J, Wang C, et al. circCELSR1 facilitates ovarian cancer proliferation and metastasis by sponging miR-598 to activate BRD4 signals. Mol Med. 2020;26:70.

81. Su Y, Feng W, Shi J, Chen L, Huang J, Lin T. circRIP2 accelerates bladder cancer progression via miR-1305/Tgf-β2/smad3 pathway. Mol Cancer. 2020;19:23.

82. Zhu J, Li Q, Wu Z, Xu W, Jiang R. Circular RNA-mediated miRNA sponge & RNA binding protein in biological modulation of breast cancer. Noncoding RNA Res. 2024;9:262-76.

83. Kai D, Yannian L, Yitian C, Dinghao G, Xin Z, Wu J. Circular RNA HIPK3 promotes gallbladder cancer cell growth by sponging microRNA-124. Biochem Biophys Res Commun. 2018;503:863-9.

84. Huang Y, Zhang C, Xiong J, Ren H. Emerging important roles of circRNAs in human cancer and other diseases. Genes Dis. 2021;8:412-23.

85. He AT, Liu J, Li F, Yang BB. Targeting circular RNAs as a therapeutic approach: current strategies and challenges. Signal Transduct Target Ther. 2021;6:185.

86. Lone SN, Nisar S, Masoodi T, et al. Liquid biopsy: a step closer to transform diagnosis, prognosis and future of cancer treatments. Mol Cancer. 2022;21:79.

87. Hirahata T, Ul Quraish R, Quraish AU, Ul Quraish S, Naz M, Razzaq MA. Liquid biopsy: a distinctive approach to the diagnosis and prognosis of cancer. Cancer Inform. 2022;21:11769351221076062.

88. Verduci L, Strano S, Yarden Y, Blandino G. The circRNA-microRNA code: emerging implications for cancer diagnosis and treatment. Mol Oncol. 2019;13:669-80.

89. Wang H, Zhang Y, Zhang H, et al. Liquid biopsy for human cancer: cancer screening, monitoring, and treatment. MedComm. 2024;5:e564.

90. Lin D, Shen L, Luo M, et al. Circulating tumor cells: biology and clinical significance. Signal Transduct Target Ther. 2021;6:404.

91. Shi X, Wang B, Feng X, Xu Y, Lu K, Sun M. circRNAs and exosomes: a mysterious frontier for human cancer. Mol Ther Nucleic Acids. 2020;19:384-92.

92. Ge Q, Zhang ZY, Li SN, Ma JQ, Zhao Z. Liquid biopsy: comprehensive overview of circulating tumor DNA (Review). Oncol Lett. 2024;28:548.

93. Zhong P, Bai L, Hong M, et al. A comprehensive review on circulating cfRNA in plasma: implications for disease diagnosis and beyond. Diagnostics. 2024;14:1045.

94. Wang S, Dong Y, Gong A, et al. Exosomal circRNAs as novel cancer biomarkers: challenges and opportunities. Int J Biol Sci. 2021;17:562-73.

95. Xu C, Jun E, Okugawa Y, et al. A circulating panel of circRNA biomarkers for the noninvasive and early detection of pancreatic ductal adenocarcinoma. Gastroenterology. 2024;166:178-90.e16.

96. Nikanjam M, Kato S, Kurzrock R. Liquid biopsy: current technology and clinical applications. J Hematol Oncol. 2022;15:131.

97. Ma H, Bell KN, Loker RN. qPCR and qRT-PCR analysis: regulatory points to consider when conducting biodistribution and vector shedding studies. Mol Ther Methods Clin Dev. 2021;20:152-68.

98. Gerdes L, Iwobi A, Busch U, Pecoraro S. Optimization of digital droplet polymerase chain reaction for quantification of genetically modified organisms. Biomol Detect Quantif. 2016;7:9-20.

99. Hu T, Ke X, Yu Y, et al. NAPTUNE: nucleic acids and protein biomarkers testing via ultra-sensitive nucleases escalation. Nat Commun. 2025;16:1331.

100. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10:57-63.

101. Nazarov PV, Muller A, Kaoma T, et al. RNA sequencing and transcriptome arrays analyses show opposing results for alternative splicing in patient derived samples. BMC Genomics. 2017;18:443.

102. Yang T, Zhang M, Zhang N. Modified Northern blot protocol for easy detection of mRNAs in total RNA using radiolabeled probes. BMC Genomics. 2022;23:66.

103. Monné Rodríguez JM, Frisk AL, Kreutzer R, et al. European Society of Toxicologic Pathology (Pathology 2.0 Molecular Pathology Special Interest Group): review of in situ hybridization techniques for drug research and development. Toxicol Pathol. 2023;51:92-111.

104. Goytain A, Ng T. NanoString nCounter Technology: high-throughput RNA validation. In: Li H, Elfman J, editors. Chimeric RNA. New York: Springer US; 2020. pp. 125-39.

105. Wang S, Qian L, Cao T, et al. Advances in the study of circRNAs in tumor drug resistance. Front Oncol. 2022;12:868363.

106. Wang X, Wang L, Lin H, et al. Research progress of CTC, ctDNA, and EVs in cancer liquid biopsy. Front Oncol. 2024;14:1303335.

107. Turner N, Huang-Bartlett C, Kalinsky K, et al. Design of SERENA-6, a phase III switching trial of camizestrant in ESR1-mutant breast cancer during first-line treatment. Future Oncol. 2023;19:559-73.

108. Tan S, Gou Q, Pu W, et al. Circular RNA F-circEA produced from EML4-ALK fusion gene as a novel liquid biopsy biomarker for non-small cell lung cancer. Cell Res. 2018;28:693-5.

109. Ge L, Sun Y, Shi Y, et al. Plasma circRNA microarray profiling identifies novel circRNA biomarkers for the diagnosis of ovarian cancer. J Ovarian Res. 2022;15:58.

110. Borkar S, Markus F, Oetting A, et al. Detection of ESR1 mutations in tissue and liquid biopsy with novel next-generation sequencing and digital droplet PCR assays: insights from multi-center real life data of almost 6000 patients. Cancers. 2025;17:1266.

111. Kumar MA, Baba SK, Sadida HQ, et al. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct Target Ther. 2024;9:27.

112. Hama Faraj GS, Hussen BM, Abdullah SR, et al. Advanced approaches of the use of circRNAs as a replacement for cancer therapy. Noncoding RNA Res. 2024;9:811-30.

113. Tao X, Ke X, Xu G. *Mechanisms of circular RNA in drug resistance of lung cancer: therapeutic targets, biomarkers, and future research directions. Discov Oncol. 2025;16:896.

114. Kirio K, Patop IL, Anduaga AM, et al. Circular RNAs exhibit exceptional stability in the aging brain and serve as reliable age and experience indicators. Cell Rep. 2025;44:115485.

115. Rashedi S, Mardani M, Rafati A, et al. Circular RNAs as prognostic and diagnostic biomarkers in renal cell carcinoma. J Clin Lab Anal. 2022;36:e24670.

116. Fosse V, Oldoni E, Bietrix F, et al; PERMIT group. Recommendations for robust and reproducible preclinical research in personalised medicine. BMC Med. 2023;21:14.

117. Kuwamoto-Imanishi S, Fujii H. Functions and potential clinical applications of circular RNAs in hepatocellular carcinoma. Hepatoma Res. 2025;11:15.

118. Shi H, Zhou Y, Jia E, et al. Comparative analysis of circular RNA enrichment methods. RNA Biol. 2022;19:55-67.

119. Karagianni K, Bibi A, Madé A, et al; EU-CardioRNA COST Action CA17129. Recommendations for detection, validation, and evaluation of RNA editing events in cardiovascular and neurological/neurodegenerative diseases. Mol Ther Nucleic Acids. 2024;35:102085.

120. Liu H, Hao W, Yang J, Zhang Y, Wang X, Zhang C. Emerging roles and potential clinical applications of translatable circular RNAs in cancer and other human diseases. Genes Dis. 2023;10:1994-2012.

121. Antoniou M, Kolamunnage-Dona R, Wason J, et al. Biomarker-guided trials: challenges in practice. Contemp Clin Trials Commun. 2019;16:100493.

122. Alqahtani S, Alqahtani T, Venkatesan K, et al. Unveiling pharmacogenomics insights into circular RNAs: toward precision medicine in cancer therapy. Biomolecules. 2025;15:535.

123. Malviya A, Bhuyan R. The recent advancements in circRNA research: from biogenesis to therapeutic interventions. Pathol Res Pract. 2023;248:154697.

124. Betz M, Massard V, Gilson P, et al. ESR1 gene mutations and liquid biopsy in ER-positive breast cancers: a small step forward, a giant leap for personalization of endocrine therapy? Cancers. 2023;15:5169.

125. Li Q, Geng S, Luo H, et al. Signaling pathways involved in colorectal cancer: pathogenesis and targeted therapy. Signal Transduct Target Ther. 2024;9:266.

126. Cui YB, Wang LJ, Xu JH, et al. Recent progress of circRNAs in hematological malignancies. Int J Med Sci. 2024;21:2544-61.

127. Li W, Liu JQ, Chen M, Xu J, Zhu D. Circular RNA in cancer development and immune regulation. J Cell Mol Med. 2022;26:1785-98.

128. de Gonzalo-Calvo D, Karaduzovic-Hadziabdic K, Dalgaard LT, et al. Machine learning for catalysing the integration of noncoding RNA in research and clinical practice. EBioMedicine. 2024;106:105247.

129. Pedraz-Valdunciel C, Rosell R. Defining the landscape of circRNAs in non-small cell lung cancer and their potential as liquid biopsy biomarkers: a complete review including current methods. Extracell Vesicles Circ Nucl Acids. 2021;2:179-201.

130. Shi Y, Song R, Wang Z, et al. Potential clinical value of circular RNAs as peripheral biomarkers for the diagnosis and treatment of major depressive disorder. EBioMedicine. 2021;66:103337.

Cancer Drug Resistance
ISSN 2578-532X (Online)

Portico

All published articles will preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles will preserved here permanently:

https://www.portico.org/publishers/oae/