REFERENCES

1. Gatopoulou X, Bardenheuer K, Van Hoorenbeeck S, Kempel A. Treatment patterns of relapsed and refractory multiple myeloma in Europe (EU-28). Value Health 2016;19:A715-6.

2. Chari A, Minnema MC, Berdeja JG, et al. Talquetamab, a T-cell-redirecting GPRC5D bispecific antibody for multiple myeloma. N Engl J Med 2022;387:2232-44.

3. Moreau P, Garfall AL, van de Donk NWCJ, et al. Teclistamab in relapsed or refractory multiple myeloma. N Engl J Med 2022;387:495-505.

4. Berdeja JG, Madduri D, Usmani SZ, et al. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study. Lancet 2021;398:314-24.

5. Munshi NC, Anderson LD Jr, Shah N, et al. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N Engl J Med 2021;384:705-16.

6. Chari A, Vogl DT, Gavriatopoulou M, et al. Oral selinexor-dexamethasone for triple-class refractory multiple myeloma. N Engl J Med 2019;381:727-38.

7. Lonial S, Popat R, Hulin C, et al. Iberdomide plus dexamethasone in heavily pretreated late-line relapsed or refractory multiple myeloma (CC-220-MM-001): a multicentre, multicohort, open-label, phase 1/2 trial. Lancet Haematol 2022;9:e822-32.

8. Lesokhin AM, Tomasson MH, Arnulf B, et al. Elranatamab in relapsed or refractory multiple myeloma: phase 2 MagnetisMM-3 trial results. Nat Med 2023;29:2259-67.

9. Gandhi UH, Cornell RF, Lakshman A, et al. Outcomes of patients with multiple myeloma refractory to CD38-targeted monoclonal antibody therapy. Leukemia 2019;33:2266-75.

10. Mateos MV, Weisel K, De Stefano V, et al. LocoMMotion: a prospective, non-interventional, multinational study of real-life current standards of care in patients with relapsed and/or refractory multiple myeloma. Leukemia 2022;36:1371-6.

11. Rodriguez-Otero P, Ailawadhi S, Arnulf B, et al. Ide-cel or standard regimens in relapsed and refractory multiple myeloma. N Engl J Med 2023;388:1002-14.

12. San-Miguel J, Dhakal B, Yong K, et al. Cilta-cel or standard care in lenalidomide-refractory multiple myeloma. N Engl J Med 2023;389:335-47.

13. Solimando AG, Malerba E, Leone P, et al. Drug resistance in multiple myeloma: soldiers and weapons in the bone marrow niche. Front Oncol 2022;12:973836.

14. Abe M. Targeting the interplay between myeloma cells and the bone marrow microenvironment in myeloma. Int J Hematol 2011;94:334-43.

15. Ferrucci A, Moschetta M, Frassanito MA, et al. A HGF/cMET autocrine loop is operative in multiple myeloma bone marrow endothelial cells and may represent a novel therapeutic target. Clin Cancer Res 2014;20:5796-807.

16. Gnoni A, Brunetti O, Longo V, et al. Immune system and bone microenvironment: rationale for targeted cancer therapies. Oncotarget 2020;11:480-7.

17. Solimando AG, Vacca A, Ribatti D. A comprehensive biological and clinical perspective can drive a patient-tailored approach to multiple myeloma: bridging the gaps between the plasma cell and the neoplastic niche. J Oncol 2020;2020:6820241.

18. Harmer D, Falank C, Reagan MR. Interleukin-6 interweaves the bone marrow microenvironment, bone loss, and multiple myeloma. Front Endocrinol 2018;9:788.

19. Vacca A, Ria R, Ribatti D, et al. A paracrine loop in the vascular endothelial growth factor pathway triggers tumor angiogenesis and growth in multiple myeloma. Haematologica 2003;88:176-85.

20. Papa S, Choy PM, Bubici C. The ERK and JNK pathways in the regulation of metabolic reprogramming. Oncogene 2019;38:2223-40.

21. Ikeda S, Abe F, Matsuda Y, Kitadate A, Takahashi N, Tagawa H. Hypoxia-inducible hexokinase-2 enhances anti-apoptotic function via activating autophagy in multiple myeloma. Cancer Sci 2020;111:4088-101.

22. Maiso P, Huynh D, Moschetta M, et al. Metabolic signature identifies novel targets for drug resistance in multiple myeloma. Cancer Res 2015;75:2071-82.

23. Bailur JK, McCachren SS, Doxie DB, et al. Early alterations in stem-like/resident T cells, innate and myeloid cells in the bone marrow in preneoplastic gammopathy. JCI Insight 2019;5:e127807.

24. Giallongo C, Tibullo D, Parrinello NL, et al. Granulocyte-like myeloid derived suppressor cells (G-MDSC) are increased in multiple myeloma and are driven by dysfunctional mesenchymal stem cells (MSC). Oncotarget 2016;7:85764-75.

25. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 2009;9:162-74.

26. Gavalas NG, Tsiatas M, Tsitsilonis O, et al. VEGF directly suppresses activation of T cells from ascites secondary to ovarian cancer via VEGF receptor type 2. Br J Cancer 2012;107:1869-75.

27. Lee H, Ahn S, Maity R, et al. Mechanisms of antigen escape from BCMA- or GPRC5D-targeted immunotherapies in multiple myeloma. Nat Med 2023;29:2295-306.

28. Turner JG, Dawson J, Sullivan DM. Nuclear export of proteins and drug resistance in cancer. Biochem Pharmacol 2012;83:1021-32.

29. Theodoropoulos N, Lancman G, Chari A. Targeting nuclear export proteins in multiple myeloma therapy. Target Oncol 2020;15:697-708.

30. Arnaoutov A, Azuma Y, Ribbeck K, et al. Crm1 is a mitotic effector of Ran-GTP in somatic cells. Nat Cell Biol 2005;7:626-32.

31. Vogt PK, Jiang H, Aoki M. Triple layer control: phosphorylation, acetylation and ubiquitination of FOXO proteins. Cell Cycle 2005;4:908-13.

32. Pichler A, Melchior F. Ubiquitin-related modifier SUMO1 and nucleocytoplasmic transport. Traffic 2002;3:381-7.

33. Kojima K, Kornblau SM, Ruvolo V, et al. Prognostic impact and targeting of CRM1 in acute myeloid leukemia. Blood 2013;121:4166-74.

34. Zhou F, Qiu W, Yao R, et al. CRM1 is a novel independent prognostic factor for the poor prognosis of gastric carcinomas. Med Oncol 2013;30:726.

35. Kandarpa M, Kraftson SJ, Maxwell SP, et al. CRM1 is highly expressed in myeloma plasma cells and its inhibition by KPT-SINE induces cytotoxicity by increasing p53 in the nucleus of multiple myeloma (MM) cells. Blood 2011;118:1852.

36. Camus V, Miloudi H, Taly A, Sola B, Jardin F. XPO1 in B cell hematological malignancies: from recurrent somatic mutations to targeted therapy. J Hematol Oncol 2017;10:47.

37. Fung HYJ, Niesman A, Chook YM. An update to the CRM1 cargo/NES database NESdb. Mol Biol Cell 2021;32:467-9.

38. Huang ZL, Gao M, Li QY, et al. Induction of apoptosis by directing oncogenic Bcr-Abl into the nucleus. Oncotarget 2013;4:2249-60.

39. Culjkovic-Kraljacic B, Baguet A, Volpon L, Amri A, Borden KL. The oncogene eIF4E reprograms the nuclear pore complex to promote mRNA export and oncogenic transformation. Cell Rep 2012;2:207-15.

40. Nikolaev AY, Li M, Puskas N, Qin J, Gu W. Parc: a cytoplasmic anchor for p53. Cell 2003;112:29-40.

41. Zhang Y, Xiong Y. A p53 amino-terminal nuclear export signal inhibited by DNA damage-induced phosphorylation. Science 2001;292:1910-5.

42. O’Brate A, Giannakakou P. The importance of p53 location: nuclear or cytoplasmic zip code? Drug Resist Updat 2003;6:313-22.

43. Rodríguez JA, Henderson BR. Identification of a functional nuclear export sequence in BRCA1. J Biol Chem 2000;275:38589-96.

44. Volpon L, Culjkovic-Kraljacic B, Sohn HS, Blanchet-Cohen A, Osborne MJ, Borden KLB. A biochemical framework for eIF4E-dependent mRNA export and nuclear recycling of the export machinery. RNA 2017;23:927-37.

45. Culjkovic-Kraljacic B, Fernando TM, Marullo R, et al. Combinatorial targeting of nuclear export and translation of RNA inhibits aggressive B-cell lymphomas. Blood 2016;127:858-68.

46. Tai YT, Landesman Y, Acharya C, et al. CRM1 inhibition induces tumor cell cytotoxicity and impairs osteoclastogenesis in multiple myeloma: molecular mechanisms and therapeutic implications. Leukemia 2014;28:155-65.

47. Zheng Y, Gery S, Sun H, Shacham S, Kauffman M, Koeffler HP. KPT-330 inhibitor of XPO1-mediated nuclear export has anti-proliferative activity in hepatocellular carcinoma. Cancer Chemother Pharmacol 2014;74:487-95.

48. Liu Y, Azizian NG, Dou Y, Pham LV, Li Y. Simultaneous targeting of XPO1 and BCL2 as an effective treatment strategy for double-hit lymphoma. J Hematol Oncol 2019;12:119.

49. Wang JC. Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol 2002;3:430-40.

50. Turner JG, Engel R, Derderian JA, Jove R, Sullivan DM. Human topoisomerase IIalpha nuclear export is mediated by two CRM-1-dependent nuclear export signals. J Cell Sci 2004;117:3061-71.

51. Engel R, Valkov NI, Gump JL, Hazlehurst L, Dalton WS, Sullivan DM. The cytoplasmic trafficking of DNA topoisomerase IIalpha correlates with etoposide resistance in human myeloma cells. Exp Cell Res 2004;295:421-31.

52. Turner JG, Dawson J, Emmons MF, et al. CRM1 inhibition sensitizes drug resistant human myeloma cells to topoisomerase II and proteasome inhibitors both in vitro and ex vivo. J Cancer 2013;4:614-25.

53. Gandhi UH, Senapedis W, Baloglu E, et al. Clinical implications of targeting XPO1-mediated nuclear export in multiple myeloma. Clin Lymphoma Myeloma Leuk 2018;18:335-45.

54. Rosebeck S, Alonge MM, Kandarpa M, et al. Synergistic myeloma cell death via novel intracellular activation of caspase-10-dependent apoptosis by carfilzomib and selinexor. Mol Cancer Ther 2016;15:60-71.

55. Turner JG, Kashyap T, Dawson JL, et al. XPO1 inhibitor combination therapy with bortezomib or carfilzomib induces nuclear localization of IκBα and overcomes acquired proteasome inhibitor resistance in human multiple myeloma. Oncotarget 2016;7:78896-909.

56. Gasparetto C, Schiller GJ, Tuchman SA, et al. Once weekly selinexor, carfilzomib and dexamethasone in carfilzomib non-refractory multiple myeloma patients. Br J Cancer 2022;126:718-25.

57. Bahlis NJ, Sutherland H, White D, et al. Selinexor plus low-dose bortezomib and dexamethasone for patients with relapsed or refractory multiple myeloma. Blood 2018;132:2546-54.

58. Grosicki S, Simonova M, Spicka I, et al. Once-per-week selinexor, bortezomib, and dexamethasone versus twice-per-week bortezomib and dexamethasone in patients with multiple myeloma (BOSTON): a randomised, open-label, phase 3 trial. Lancet 2020;396:1563-73.

59. Crochiere M, Kashyap T, Kalid O, et al. Deciphering mechanisms of drug sensitivity and resistance to selective inhibitor of nuclear export (SINE) compounds. BMC Cancer 2015;15:910.

60. Jardin F, Pujals A, Pelletier L, et al. Recurrent mutations of the exportin 1 gene (XPO1) and their impact on selective inhibitor of nuclear export compounds sensitivity in primary mediastinal B-cell lymphoma. Am J Hematol 2016;91:923-30.

61. Walker JS, Hing ZA, Harrington B, et al. Recurrent XPO1 mutations alter pathogenesis of chronic lymphocytic leukemia. J Hematol Oncol 2021;14:17.

62. Neggers JE, Vercruysse T, Jacquemyn M, et al. Identifying drug-target selectivity of small-molecule CRM1/XPO1 inhibitors by CRISPR/Cas9 genome editing. Chem Biol 2015;22:107-16.

63. Neggers JE, Vanstreels E, Baloglu E, Shacham S, Landesman Y, Daelemans D. Heterozygous mutation of cysteine528 in XPO1 is sufficient for resistance to selective inhibitors of nuclear export. Oncotarget 2016;7:68842-50.

64. Kashyap T, Argueta C, Aboukameel A, et al. Selinexor, a selective inhibitor of nuclear export (SINE) compound, acts through NF-κB deactivation and combines with proteasome inhibitors to synergistically induce tumor cell death. Oncotarget 2016;7:78883-95.

65. Miyake TM, Pradeep S, Bayraktar E, et al. NRG1/ERBB3 pathway activation induces acquired resistance to XPO1 inhibitors. Mol Cancer Ther 2020;19:1727-35.

66. Sun Z, Cui Y, Li Y, Li J, Qu X. Dynamic single-cell RNA-seq reveals mechanism of selinexor-resistance in chronic myeloid leukemia. Blood 2023;142:1801.

67. Lagana A, Park S, Edwards D, et al. E2F1 is a biomarker of selinexor resistance in relapsed/refractory multiple myeloma patients. Blood 2018;132:3216.

68. Lagana A, Bhalla S, Aleman A, et al. A machine learning approach identifies a 30-gene model that predicts sensitivity to selinexor in multiple myeloma. Blood 2019;134:3101.

69. Chari A, Cho HJ, Dhadwal A, et al. A phase 2 study of panobinostat with lenalidomide and weekly dexamethasone in myeloma. Blood Adv 2017;1:1575-83.

70. Cho HJ, Mei AH, Tung K, et al. MAGE-A3 promotes chemotherapy resistance and proliferation in multiple myeloma through regulation of BIM and p21Cip1. Blood 2018;132:4464.

71. Restrepo P, Bhalla S, Ghodke-Puranik Y, et al. A three-gene signature predicts response to selinexor in multiple myeloma. JCO Precis Oncol 2022;6:e2200147.

72. Cohen YC, Zada M, Wang S, et al. Single cell RNA sequencing in patients enrolled in a selinexor clinical trial reveals overexpression of alternative nuclear export pathways associated with resistance to selinexor in refractory multiple myeloma. Blood 2021;138:2725.

73. Wang X, Xu J, Li Q, et al. RNA-binding protein hnRNPU regulates multiple myeloma resistance to selinexor. Cancer Lett 2024;580:216486.

74. Krecic AM, Swanson MS. hnRNP complexes: composition, structure, and function. Curr Opin Cell Biol 1999;11:363-71.

75. Zhu ZC, Liu JW, Yang C, Zhao M, Xiong ZQ. XPO1 inhibitor KPT-330 synergizes with Bcl-xL inhibitor to induce cancer cell apoptosis by perturbing rRNA processing and Mcl-1 protein synthesis. Cell Death Dis 2019;10:395.

76. Hu F, Chen XQ, Li XP, et al. Drug resistance biomarker ABCC4 of selinexor and immune feature in multiple myeloma. Int Immunopharmacol 2022;108:108722.

77. Li S, Fu J, Walker CJ, et al. Dual targeting of protein translation and nuclear protein export results in enhanced antimyeloma effects. Blood Adv 2023;7:2926-37.

78. Liao Y, Ke X, Deng T, Qin Q. The second-generation XPO1 inhibitor eltanexor inhibits human cytomegalovirus (HCMV) replication and promotes type I interferon response. Front Microbiol 2021;12:675112.

79. Lancman G, Sastow DL, Cho HJ, et al. Bispecific antibodies in multiple myeloma: present and future. Blood Cancer Discov 2021;2:423-33.

80. Kontermann RE, Brinkmann U. Bispecific antibodies. Drug Discov Today 2015;20:838-47.

81. Rodríguez-Lobato LG, Ganzetti M, Fernández de Larrea C, Hudecek M, Einsele H, Danhof S. CAR T-cells in multiple myeloma: state of the art and future directions. Front Oncol 2020;10:1243.

82. Martin T, Usmani SZ, Berdeja JG, et al. Ciltacabtagene autoleucel, an anti-B-cell maturation antigen chimeric antigen receptor T-cell therapy, for relapsed/refractory multiple myeloma: CARTITUDE-1 2-year follow-up. J Clin Oncol 2023;41:1265-74.

83. Rodríguez Otero P, Ailawadhi S, Arnulf B, et al. Idecabtagene vicleucel (ide-cel) versus standard (std) regimens in patients (pts) with triple-class-exposed (TCE) relapsed and refractory multiple myeloma (RRMM): updated analysis from KarMMa-3. Blood 2023;142:1028.

84. Ali SA, Shi V, Maric I, et al. T cells expressing an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma. Blood 2016;128:1688-700.

85. Brudno JN, Maric I, Hartman SD, et al. T cells genetically modified to express an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of poor-prognosis relapsed multiple myeloma. J Clin Oncol 2018;36:2267-80.

86. Samur MK, Fulciniti M, Aktas Samur A, et al. Biallelic loss of BCMA as a resistance mechanism to CAR T cell therapy in a patient with multiple myeloma. Nat Commun 2021;12:868.

87. Da Vià MC, Dietrich O, Truger M, et al. Homozygous BCMA gene deletion in response to anti-BCMA CAR T cells in a patient with multiple myeloma. Nat Med 2021;27:616-9.

88. Mailankody S, Devlin SM, Landa J, et al. GPRC5D-targeted CAR T cells for myeloma. N Engl J Med 2022;387:1196-206.

89. Brioli A, Melchor L, Cavo M, Morgan GJ. The impact of intra-clonal heterogeneity on the treatment of multiple myeloma. Br J Haematol 2014;165:441-54.

90. Eckmann J, Hage C, Stefanie L, Bayer C, Klein C, Umana P. Early intervention with celmods, but not imids, prevents relapse to forimtamig driven by GPRC5D-negative myeloma cells. Blood 2023;142:4659.

91. Hamieh M, Dobrin A, Cabriolu A, et al. CAR T cell trogocytosis and cooperative killing regulate tumour antigen escape. Nature 2019;568:112-6.

92. van de Donk NWCJ, Themeli M, Usmani SZ. Determinants of response and mechanisms of resistance of CAR T-cell therapy in multiple myeloma. Blood Cancer Discov 2021;2:302-18.

93. Long AH, Haso WM, Shern JF, et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med 2015;21:581-90.

94. Meermeier EW, Welsh SJ, Sharik ME, et al. Tumor burden limits bispecific antibody efficacy through T cell exhaustion averted by concurrent cytotoxic therapy. Blood Cancer Discov 2021;2:354-69.

95. Philipp N, Kazerani M, Nicholls A, et al. T-cell exhaustion induced by continuous bispecific molecule exposure is ameliorated by treatment-free intervals. Blood 2022;140:1104-18.

96. Cohen AD, Mateos MV, Cohen YC, et al. Efficacy and safety of cilta-cel in patients with progressive multiple myeloma after exposure to other BCMA-targeting agents. Blood 2023;141:219-30.

97. Lee H, Neri P, Bahlis NJ. Current use of bispecific antibodies to treat multiple myeloma. Hematology Am Soc Hematol Educ Program 2023;2023:332-9.

98. Cortes-selva D, Casneuf T, Vishwamitra D, et al. Teclistamab, a B-cell maturation antigen (BCMA) × CD3 bispecific antibody, in patients with relapsed/refractory multiple myeloma (RRMM): correlative analyses from majesTEC-1. Blood 2022;140:241-3.

99. Ahn S, Leblay N, Neri P. Understanding the mechanisms of resistance to T cell-based immunotherapies to develop more favorable strategies in multiple myeloma. Hemasphere 2021;5:e575.

100. Leblay N, Maity R, Hasan F, Neri P. Deregulation of adaptive T cell immunity in multiple myeloma: insights into mechanisms and therapeutic opportunities. Front Oncol 2020;10:636.

101. Vishwamitra D, Skerget S, Cortes D, et al. Mechanisms of resistance and relapse with talquetamab in patients with relapsed/refractory multiple myeloma from the phase 1/2 monumenTAL-1 study. Blood 2023;142:1933.

102. Friedrich MJ, Neri P, Kehl N, et al. The pre-existing T cell landscape determines the response to bispecific T cell engagers in multiple myeloma patients. Cancer Cell 2023;41:711-25.e6.

103. Thakurta A, Pierceall WE, Amatangelo MD, Flynt E, Agarwal A. Developing next generation immunomodulatory drugs and their combinations in multiple myeloma. Oncotarget 2021;12:1555-63.

104. Ruchelman AL, Man HW, Zhang W, et al. Isosteric analogs of lenalidomide and pomalidomide: synthesis and biological activity. Bioorg Med Chem Lett 2013;23:360-5.

105. Chamberlain PP, Lopez-Girona A, Miller K, et al. Structure of the human cereblon-DDB1-lenalidomide complex reveals basis for responsiveness to thalidomide analogs. Nat Struct Mol Biol 2014;21:803-9.

106. Matyskiela ME, Zhang W, Man HW, et al. A cereblon modulator (CC-220) with improved degradation of ikaros and aiolos. J Med Chem 2018;61:535-42.

107. Hansen JD, Correa M, Nagy MA, et al. Discovery of CRBN E3 ligase modulator CC-92480 for the treatment of relapsed and refractory multiple myeloma. J Med Chem 2020;63:6648-76.

108. Bjorklund CC, Kang J, Amatangelo M, et al. Iberdomide (CC-220) is a potent cereblon E3 ligase modulator with antitumor and immunostimulatory activities in lenalidomide- and pomalidomide-resistant multiple myeloma cells with dysregulated CRBN. Leukemia 2020;34:1197-201.

109. Amatangelo M, Bjorklund C, Ma P, et al. Preclinical and translational data support development of iberdomide in combination with CD38- and SLAMF7-directed monoclonal antibodies: evidence for rational combinations. Blood 2020;136:9-10.

110. Van Oekelen O, Amatangelo M, Guo M, et al. Large-scale mass cytometry reveals significant activation of innate and adaptive immunity in bone marrow tumor microenvironment of iberdomide-treated myeloma patients. Blood 2021;138:730.

111. Ma P, Sridharan V, Wollerman K, et al. Iberdomide enhances dara mediated cytotoxicity through upregulation of CDC activity and elevated NK cell mediated ADCC. Blood 2023;142:3289.

112. van de Donk NWCJ, Popat R, Larsen J, et al. First results of iberdomide (IBER; CC-220) in combination with dexamethasone (DEX) and daratumumab (DARA) or bortezomib (BORT) in patients with relapsed/refractory multiple myeloma (RRMM). Blood 2020;136:16-7.

113. van de Donk NW, Touzeau C, Terpos E, et al. Iberdomide maintenance after autologous stem-cell transplantation in newly diagnosed MM: first results of the phase 2 EMN26 study. Blood 2023;142:208.

114. Lonial S, Abdallah A, Anwer F, et al. Iberdomide (IBER) in combination with dexamethasone (DEX) in relapsed/refractory multiple myeloma (RRMM): results from the anti-B-cell maturation antigen (BCMA)-exposed cohort of the CC-220-MM-001 trial. Blood 2022;140:4398-400.

115. Richardson PG, Trudel S, Quach H, et al. Mezigdomide (CC-92480), a potent, novel cereblon E3 ligase modulator (CELMoD), combined with dexamethasone (DEX) in patients (pts) with relapsed/refractory multiple myeloma (RRMM): preliminary results from the dose-expansion phase of the CC-92480-MM-001 trial. Blood 2022;140:1366-8.

116. Richardson PG, Sandhu I, Hofmeister CC, et al. Mezigdomide (MEZI) plus dexamethasone (DEX) and daratumumab (DARA) or elotuzumab (ELO) in patients (pts) with relapsed/refractory multiple myeloma (RRMM): results from the CC-92480-MM-002 trial. Blood 2023;142:1013.

117. Bird S, Pawlyn C. IMiD resistance in multiple myeloma: current understanding of the underpinning biology and clinical impact. Blood 2023;142:131-40.

118. Bohl SR, Schmalbrock LK, Bauhuf I, et al. Comprehensive CRISPR-Cas9 screens identify genetic determinants of drug responsiveness in multiple myeloma. Blood Adv 2021;5:2391-402.

119. Kortüm KM, Mai EK, Hanafiah NH, et al. Targeted sequencing of refractory myeloma reveals a high incidence of mutations in CRBN and Ras pathway genes. Blood 2016;128:1226-33.

120. Gooding S, Ansari-Pour N, Towfic F, et al. Multiple cereblon genetic changes are associated with acquired resistance to lenalidomide or pomalidomide in multiple myeloma. Blood 2021;137:232-7.

121. Chrisochoidou Y, Lebihan Y, Morales S, et al. Investigating the functional impact of CRBN mutations on response to IMiD/celmod agents in myeloma. Blood 2023;142:753.

122. Tilmont R, Maity R, Leblay N, et al. CRBN structural changes, copy number changes and COP9 signalosome subunits gene expression mediate sensitivity to new celmod compound CC-92480 in multiple myeloma patients. Blood 2022;140:9964-5.

123. Haertle L, Barrio S, Munawar U, et al. Cereblon enhancer methylation and IMiD resistance in multiple myeloma. Blood 2021;138:1721-6.

124. Dimopoulos K, Søgaard Helbo A, Fibiger Munch-Petersen H, et al. Dual inhibition of DNMTs and EZH2 can overcome both intrinsic and acquired resistance of myeloma cells to IMiDs in a cereblon-independent manner. Mol Oncol 2018;12:180-95.

125. Bird SA, Barber A, Sialana FJ, et al. Multiomics analysis of IMiD/CELMoD resistant multiple myeloma models uncovers novel and targetable vulnerabilities in the SREBP lipid synthesis pathway. Blood 2022;140:600-1.

126. Barrio S, Munawar U, Zhu YX, et al. IKZF1/3 and CRL4CRBN E3 ubiquitin ligase mutations and resistance to immunomodulatory drugs in multiple myeloma. Haematologica 2020;105:e237-41.

127. Chung DJ, Pronschinske KB, Shyer JA, et al. T-cell exhaustion in multiple myeloma relapse after autotransplant: optimal timing of immunotherapy. Cancer Immunol Res 2016;4:61-71.

128. Batorov EV, Aristova TA, Sergeevicheva VV, et al. Quantitative and functional characteristics of circulating and bone marrow PD-1- and TIM-3-positive T cells in treated multiple myeloma patients. Sci Rep 2020;10:20846.

129. Lucas F, Pennell M, Huang Y, et al. T cell transcriptional profiling and immunophenotyping uncover LAG3 as a potential significant target of immune modulation in multiple myeloma. Biol Blood Marrow Transplant 2020;26:7-15.

130. Chen LY, Gooding S. Tumor and microenvironmental mechanisms of resistance to immunomodulatory drugs in multiple myeloma. Front Oncol 2022;12:1038329.

131. Biran N, Vesole DH, Parmar H, et al. A phase 2b study of selinexor in combination with carfilzomib, daratumumab, or pomalidomide in patients with multiple myeloma relapsing on current therapy. Blood 2023;142:6714.

132. Gasparetto C, Lentzsch S, Schiller G, et al. Selinexor, daratumumab, and dexamethasone in patients with relapsed or refractory multiple myeloma. EJHaem 2021;2:56-65.

133. White DJ, Chen CI, Baljevic M, et al. Once weekly oral selinexor, pomalidomide, and dexamethasone in relapsed refractory multiple myeloma. Blood 2021;138:2748.

134. White D, Schiller GJ, Madan S, et al. Efficacy and safety of once weekly selinexor 40 mg versus 60 mg with pomalidomide and dexamethasone in relapsed and/or refractory multiple myeloma. Front Oncol 2024;14:1352281.

135. Mei H, Li C, Jiang H, et al. A bispecific CAR-T cell therapy targeting BCMA and CD38 in relapsed or refractory multiple myeloma. J Hematol Oncol 2021;14:161.

136. Tang Y, Yin H, Zhao X, et al. High efficacy and safety of CD38 and BCMA bispecific CAR-T in relapsed or refractory multiple myeloma. J Exp Clin Cancer Res 2022;41:2.

137. Yan Z, Cao J, Cheng H, et al. A combination of humanised anti-CD19 and anti-BCMA CAR T cells in patients with relapsed or refractory multiple myeloma: a single-arm, phase 2 trial. Lancet Haematol 2019;6:e521-9.

138. Zhang X, Zhang H, Lan H, Wu J, Xiao Y. CAR-T cell therapy in multiple myeloma: current limitations and potential strategies. Front Immunol 2023;14:1101495.

139. Zhang X, Zhang C, Qiao M, et al. Depletion of BATF in CAR-T cells enhances antitumor activity by inducing resistance against exhaustion and formation of central memory cells. Cancer Cell 2022;40:1407-22.e7.

140. Zhang H, Hu Y, Shao M, et al. Dasatinib enhances anti-leukemia efficacy of chimeric antigen receptor T cells by inhibiting cell differentiation and exhaustion. J Hematol Oncol 2021;14:113.

141. Ali AI, Wang M, von Scheidt B, et al. A histone deacetylase inhibitor, panobinostat, enhances chimeric antigen receptor T-cell antitumor effect against pancreatic cancer. Clin Cancer Res 2021;27:6222-34.

142. Lesokhin AM, Richter J, Trudel S, et al. Enduring responses after 1-year, fixed-duration cevostamab therapy in patients with relapsed/refractory multiple myeloma: early experience from a phase I study. Blood 2022;140:4415-7.

143. Abecassis A, Roders N, Fayon M, et al. CAR-T cells derived from multiple myeloma patients at diagnosis have improved cytotoxic functions compared to those produced at relapse or following daratumumab treatment. EJHaem 2022;3:970-4.

144. Searle E, Quach H, Wong SW, et al. Teclistamab in combination with subcutaneous daratumumab and lenalidomide in patients with multiple myeloma: results from one cohort of majesTEC-2, a phase1b, multicohort study. Blood 2022;140:394-6.

145. Cohen YC, Morillo D, Gatt ME, et al. First results from the RedirecTT-1 study with teclistamab (tec) + talquetamab (tal) simultaneously targeting BCMA and GPRC5D in patients (pts) with relapsed/refractory multiple myeloma (RRMM). J Clin Oncol 2023;41:8002.

146. Mateos M, Morillo D, Gatt M, et al. S190: First results from the redirectt-1 study with teclistamab (TEC) + talquetamab (TAL) simultaneously targeting bcma and GPRC5D in patients (PTS) with relapsed/refractory multiple myeloma (RRMM). HemaSphere 2023;7:e15362d7.

147. Pillarisetti R, Yang D, Yao J, et al. Characterization of JNJ-79635322, a novel BCMAxGPRC5DxCD3 T-cell redirecting trispecific antibody, for the treatment of multiple myeloma. Blood 2023;142:456.

148. Lee H, Neri P, Bahlis NJ. BCMA- or GPRC5D-targeting bispecific antibodies in multiple myeloma: efficacy, safety, and resistance mechanisms. Blood 2024;143:1211-7.

149. Chow TT, Amatangelo M, Ma P, et al. Preclinical and translational biomarker analyses to inform clinical development of mezigdomide (CC-92480) in combination with dexamethasone and daratumumab in multiple myeloma. Blood 2023;142:3318.

150. Bjorklund CC, Amatangelo M, Kang J, et al. CC-92480 enhances cell-autonomous cytotoxicity through blockade of G 2/M transition when combined with bortezomib/dexamethasone in pre-clinical multiple myeloma. Blood 2021;138:2669.

151. Amatangelo M, Bjorklund CC, Hagner P, et al. P-230: Preclinical and translational biomarker analysis to support further clinical development and dose optimization of mezigdomide (MEZI; CC-92480) in combination with either bortezomib or carfilzomib. Cl Lymph Myelom Leuk 2022;22:S161-2.

152. Paiva B, Gaffney B, Burnett K, et al. Synergistic antitumor activity of alnuctamab (ALNUC; BMS-986349; CC-93269), a BCMA 2+1 T cell engager (TCE), and celmod agents in multiple myeloma (MM) preclinical models. Blood 2022;140:7054-5.

153. Aleman A, Kogan-zajdman A, Upadhyaya B, et al. P-175 improving anti-BCMA CAR-T functionality with novel immunomodulatory agent iberdomide (CC220) in multiple myeloma. Cl Lymph Myelom Leuk 2023;23:S131-2.

154. Rodriguez Otero P, D’souza A, Reece D, et al. S188: Teclistamab in combination with daratumumab, a novel, immunotherapy-based approach for the treatment of relapsed/refractory multiple myeloma: updated phase 1b results. HemaSphere 2022;6:89-90.

155. Matous J, Biran N, Perrot A, et al. Talquetamab + pomalidomide in patients with relapsed/refractory multiple myeloma: safety and preliminary efficacy results from the phase 1b monumenTAL-2 study. Blood 2023;142:1014.

156. Dholaria BR, Weisel K, Mateos M, et al. Talquetamab (tal) + daratumumab (dara) in patients (pts) with relapsed/refractory multiple myeloma (RRMM): updated TRIMM-2 results. J Clin Oncol 2023;41:8003.

157. Biran N, Vesole DH, Parmar H, et al. A phase 1/2 study of carfilzomib, iberdomide and dexamethasone (KID) in patients with newly diagnosed transplant-eligible multiple myeloma. Blood 2023;142:2022.

158. Lonial S, Richardson PG, Popat R, et al. OAB-013: iberdomide (IBER) in combination with dexamethasone (DEX) and daratumumab (DARA), bortezomib (BORT), or carfilzomib (CFZ) in patients (pts) with relapsed/refractory multiple myeloma (RRMM). Cl Lymph Myelom Leuk 2021;21:S9.

159. White D, Lipe B, Mesa MG, et al. OA-41 Iberdomide, bortezomib, and dexamethasone (IberVd) in transplant-ineligible newly diagnosed multiple myeloma (NDMM): results from the CC-220-MM-001 trial. Cl Lymph Myelom Leuk 2023;23:S25.

160. Oriol A, Sandhu I, Raab M, et al. OA-49 Mezigdomide (MEZI) plus dexamethasone (DEX) and bortezomib (BORT) or carfilzomib (CFZ) in patients (pts) with relapsed/refractory multiple myeloma (RRMM): results from the CC-92480-MM-002 trial. Cl Lymph Myelom Leuk 2023;23:S31.

Cancer Drug Resistance
ISSN 2578-532X (Online)

Portico

All published articles will preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles will preserved here permanently:

https://www.portico.org/publishers/oae/