REFERENCES

1. Bukowski K, Kciuk M, Kontek R. Mechanisms of multidrug resistance in cancer chemotherapy. Int J Mol Sci 2020;21:3233.

2. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2002;2:48-58.

3. Ward RA, Fawell S, Floc'h N, Flemington V, McKerrecher D, Smith PD. Challenges and opportunities in cancer drug resistance. Chem Rev 2021;121:3297-351.

4. Roberts AW, Wei AH, Huang DCS. BCL2 and MCL1 inhibitors for hematologic malignancies. Blood 2021;138:1120-36.

5. Vogel A, Segatto O, Stenzinger A, Saborowski A. FGFR2 inhibition in cholangiocarcinoma. Annu Rev Med 2023;74:293-306.

6. Xiang S, Lu X. Selective type II TRK inhibitors overcome xDFG mutation mediated acquired resistance to the second-generation inhibitors selitrectinib and repotrectinib. Acta Pharm Sin B 2024;14:517-32.

7. Xiong L, Wei Y, Jia Q, et al. The application of extracellular vesicles in colorectal cancer metastasis and drug resistance: recent advances and trends. J Nanobiotechnology 2023;21:143.

8. Welsh JA, Goberdhan DCI, O'Driscoll L, et al; MISEV Consortium. Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches. J Extracell Vesicles 2024;13:e12404.

9. Li SR, Man QW, Gao X, et al. Tissue-derived extracellular vesicles in cancers and non-cancer diseases: present and future. J Extracell Vesicles 2021;10:e12175.

10. Li M, Fang F, Sun M, Zhang Y, Hu M, Zhang J. Extracellular vesicles as bioactive nanotherapeutics: an emerging paradigm for regenerative medicine. Theranostics 2022;12:4879-903.

11. Du S, Guan Y, Xie A, et al. Extracellular vesicles: a rising star for therapeutics and drug delivery. J Nanobiotechnology 2023;21:231.

12. Dixson AC, Dawson TR, Di Vizio D, Weaver AM. Context-specific regulation of extracellular vesicle biogenesis and cargo selection. Nat Rev Mol Cell Biol 2023;24:454-76.

13. Ming-Kun C, Zi-Xian C, Mao-Ping C, Hong C, Zhuang-Fei C, Shan-Chao Z. Engineered extracellular vesicles: a new approach for targeted therapy of tumors and overcoming drug resistance. Cancer Commun 2024;44:205-25.

14. Rädler J, Gupta D, Zickler A, Andaloussi SE. Exploiting the biogenesis of extracellular vesicles for bioengineering and therapeutic cargo loading. Mol Ther 2023;31:1231-50.

15. Luo R, Liu M, Tan T, et al. Emerging significance and therapeutic potential of extracellular vesicles. Int J Biol Sci 2021;17:2476-86.

16. Yang Q, Xu J, Gu J, et al. Extracellular vesicles in cancer drug resistance: roles, mechanisms, and implications. Adv Sci 2022;9:e2201609.

17. Shan C, Liang Y, Wang K, Li P. Mesenchymal stem cell-derived extracellular vesicles in cancer therapy resistance: from biology to clinical opportunity. Int J Biol Sci 2024;20:347-66.

18. Liu X, Zhang G, Yu T, et al. CL4-modified exosomes deliver lncRNA DARS-AS1 siRNA to suppress triple-negative breast cancer progression and attenuate doxorubicin resistance by inhibiting autophagy. Int J Biol Macromol 2023;250:126147.

19. Lou G, Song X, Yang F, et al. Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. J Hematol Oncol 2015;8:122.

20. Zhang Q, Zhang H, Ning T, et al. Exosome-delivered c-met siRNA could reverse chemoresistance to cisplatin in gastric cancer. Int J Nanomedicine 2020;15:2323-35.

21. Liang Y, Duan L, Lu J, Xia J. Engineering exosomes for targeted drug delivery. Theranostics 2021;11:3183-95.

22. Wen J, Chen Y, Liao C, et al. Engineered mesenchymal stem cell exosomes loaded with miR-34c-5p selectively promote eradication of acute myeloid leukemia stem cells. Cancer Lett 2023;575:216407.

23. Jia G, Han Y, An Y, et al. NRP-1 targeted and cargo-loaded exosomes facilitate simultaneous imaging and therapy of glioma in vitro and in vivo. Biomaterials 2018;178:302-16.

24. Pan BT, Teng K, Wu C, Adam M, Johnstone RM. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol 1985;101:942-8.

25. Dai W, Dong Y, Han T, et al. Microenvironmental cue-regulated exosomes as therapeutic strategies for improving chronic wound healing. NPG Asia Mater 2022;14:419.

26. Onukwugha NE, Kang YT, Nagrath S. Emerging micro-nanotechnologies for extracellular vesicles in immuno-oncology: from target specific isolations to immunomodulation. Lab Chip 2022;22:3314-39.

27. Panagopoulou MS, Wark AW, Birch DJS, Gregory CD. Phenotypic analysis of extracellular vesicles: a review on the applications of fluorescence. J Extracell Vesicles 2020;9:1710020.

28. Imanbekova M, Suarasan S, Lu Y, Jurchuk S, Wachsmann-Hogiu S. Recent advances in optical label-free characterization of extracellular vesicles. Nanophotonics 2022;11:2827-63.

29. Kolenc A, Maličev E. Current methods for analysing mesenchymal stem cell-derived extracellular vesicles. Int J Mol Sci 2024;25:3439.

30. Wei H, Chen J, Wang S, et al. A nanodrug consisting of doxorubicin and exosome derived from mesenchymal stem cells for osteosarcoma treatment in vitro. Int J Nanomedicine 2019;14:8603-10.

31. Wu Y, Deng W, Klinke DJ 2nd. Exosomes: improved methods to characterize their morphology, RNA content, and surface protein biomarkers. Analyst 2015;140:6631-42.

32. Welsh JA, Arkesteijn GJA, Bremer M, et al. A compendium of single extracellular vesicle flow cytometry. J Extracell Vesicles 2023;12:e12299.

33. Pospichalova V, Svoboda J, Dave Z, et al. Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer. J Extracell Vesicles 2015;4:25530.

34. Bağcı C, Sever-Bahcekapili M, Belder N, Bennett APS, Erdener ŞE, Dalkara T. Overview of extracellular vesicle characterization techniques and introduction to combined reflectance and fluorescence confocal microscopy to distinguish extracellular vesicle subpopulations. Neurophotonics 2022;9:021903.

35. Wang JM, Li YJ, Wu JY, et al. Comparative evaluation of methods for isolating small extracellular vesicles derived from pancreatic cancer cells. Cell Biosci 2021;11:37.

36. Teixeira-Marques A, Monteiro-Reis S, Montezuma D, et al. Improved recovery of urinary small extracellular vesicles by differential ultracentrifugation. Sci Rep 2024;14:12267.

37. Shi G, Yang X, Wang J, et al. Isolation of extracellular outer membrane vesicles (OMVs) from Escherichia coli using EVscore47 beads. Molecules 2024;29:1831.

38. Moccia V, Centelleghe C, Giusti I, et al. Isolation and characterization of cetacean cell-derived extracellular vesicles. Animals 2023;13:3304.

39. Lee Y, Ni J, Wasinger VC, Graham P, Li Y. Comparison study of small extracellular vesicle isolation methods for profiling protein biomarkers in breast cancer liquid biopsies. Int J Mol Sci 2023;24:15462.

40. Ciliberti MG, Santillo A, Sevi A, et al. First insight into extracellular vesicle-miRNA characterization in a sheep in vitro model of inflammation. Front Vet Sci 2023;10:1186989.

41. Vo N, Tran C, Tran NHB, et al. A novel multi-stage enrichment workflow and comprehensive characterization for HEK293F-derived extracellular vesicles. J Extracell Vesicles 2024;13:e12454.

42. Visan KS, Lobb RJ, Ham S, et al. Comparative analysis of tangential flow filtration and ultracentrifugation, both combined with subsequent size exclusion chromatography, for the isolation of small extracellular vesicles. J Extracell Vesicles 2022;11:e12266.

43. Mansur S, Habib S, Hawkins M, Brown SR, Weinman ST, Bao Y. Preparation of nanoparticle-loaded extracellular vesicles using direct flow filtration. Pharmaceutics 2023;15:1551.

44. Li Z, Liu C, Cheng Y, et al. Cascaded microfluidic circuits for pulsatile filtration of extracellular vesicles from whole blood for early cancer diagnosis. Sci Adv 2023;9:eade2819.

45. Sunkara V, Park J, Han J, et al. Exosome precipitation by ionic strength modulation: ExoPRISM. ACS Appl Mater Interfaces 2023;15:56807-19.

46. Morozumi M, Izumi H, Shimizu T, Takeda Y. Comparison of isolation methods using commercially available kits for obtaining extracellular vesicles from cow milk. J Dairy Sci 2021;104:6463-71.

47. Mladenović D, Khamari D, Kittel Á, Koort K, Buzás EI, Zarovni N. Acidification of blood plasma facilitates the separation and analysis of extracellular vesicles. J Thromb Haemost 2023;21:1032-42.

48. Zhang Z, Yu K, You Y, et al. Comprehensive characterization of human brain-derived extracellular vesicles using multiple isolation methods: implications for diagnostic and therapeutic applications. J Extracell Vesicles 2023;12:e12358.

49. Williams S, Jalal AR, Lewis MP, Davies OG. A survey to evaluate parameters governing the selection and application of extracellular vesicle isolation methods. J Tissue Eng 2023;14:20417314231155114.

50. Vychytilova-Faltejskova P, Vilmanova S, Pifkova L, et al. Optimized procedure for high-throughput transcriptome profiling of small extracellular vesicles isolated from low volume serum samples. Clin Chem Lab Med 2024;62:157-67.

51. Tengler L, Tiedtke M, Schütz J, et al. Optimization of extracellular vesicles preparation from saliva of head and neck cancer patients. Sci Rep 2024;14:946.

52. Soupir AC, Tian Y, Stewart PA, et al. Detectable lipidomes and metabolomes by different plasma exosome isolation methods in healthy controls and patients with advanced prostate and lung cancer. Int J Mol Sci 2023;24:1830.

53. Soares M, Pinto MM, Nobre RJ, et al. Isolation of extracellular vesicles from human follicular fluid: size-exclusion chromatography versus ultracentrifugation. Biomolecules 2023;13:278.

54. Northrop-Albrecht EJ, Taylor WR, Huang BQ, Kisiel JB, Lucien F. Assessment of extracellular vesicle isolation methods from human stool supernatant. J Extracell Vesicles 2022;11:e12208.

55. Martínez-Greene JA, Gómez-Chavarín M, Ramos-Godínez MDP, Martínez-Martínez E. Isolation of hepatic and adipose-tissue-derived extracellular vesicles using density gradient separation and size exclusion chromatography. Int J Mol Sci 2023;24:12704.

56. Zhang C, Huo X, Zhu Y, et al. Electrodeposited magnetic nanoporous membrane for high-yield and high-throughput immunocapture of extracellular vesicles and lipoproteins. Commun Biol 2022;5:1358.

57. Yang K, Jia M, Cheddah S, et al. Peptide ligand-SiO2 microspheres with specific affinity for phosphatidylserine as a new strategy to isolate exosomes and application in proteomics to differentiate hepatic cancer. Bioact Mater 2022;15:343-54.

58. Guo X, Hu F, Zhao S, Yong Z, Zhang Z, Peng N. Immunomagnetic separation method integrated with the Strep-tag II system for rapid enrichment and mild release of exosomes. Anal Chem 2023;95:3569-76.

59. Fortunato D, Giannoukakos S, Giménez-Capitán A, Hackenberg M, Molina-Vila MA, Zarovni N. Selective isolation of extracellular vesicles from minimally processed human plasma as a translational strategy for liquid biopsies. Biomark Res 2022;10:57.

60. Colella AP, Prakash A, Miklavcic JJ. Homogenization and thermal processing reduce the concentration of extracellular vesicles in bovine milk. Food Sci Nutr 2024;12:131-40.

61. Hartung F, Haimerl P, Schindela S, et al. Extracellular vesicle miRNAs drive aberrant macrophage responses in NSAID-exacerbated respiratory disease. Allergy 2024;79:1893-907.

62. Yung C, Zhang Y, Kuhn M, et al. Neonatal enteroids absorb extracellular vesicles from human milk-fed infant digestive fluid. J Extracell Vesicles 2024;13:e12422.

63. Fan W, Xu Z, Zhang J, et al. Naringenin regulates cigarette smoke extract-induced extracellular vesicles from alveolar macrophage to attenuate the mouse lung epithelial ferroptosis through activating EV miR-23a-3p/ACSL4 axis. Phytomedicine 2024;124:155256.

64. Hallal SM, Tűzesi Á, Sida LA, et al. Glioblastoma biomarkers in urinary extracellular vesicles reveal the potential for a ‘liquid gold’ biopsy. Br J Cancer 2024;130:836-51.

65. Pait MC, Kaye SD, Su Y, et al. Novel method for collecting hippocampal interstitial fluid extracellular vesicles (EV(ISF) ) reveals sex-dependent changes in microglial EV proteome in response to Aβ pathology. J Extracell Vesicles 2024;13:e12398.

66. Tominaga Y, Kawamura T, Ito E, et al. Pleiotropic effects of extracellular vesicles from induced pluripotent stem cell-derived cardiomyocytes on ischemic cardiomyopathy: a preclinical study. J Heart Lung Transplant 2024;43:85-99.

67. Kawano K, Kuzuma Y, Yoshio K, et al. Extracellular-vesicle catch-and-release isolation system using a net-charge invertible curvature-sensing peptide. Anal Chem 2024;96:3754-62.

68. Mishra A, Zehra S, Bharti PK, et al. Spectroscopic insight into breast cancer: profiling small extracellular vesicles lipids via infrared spectroscopy for diagnostic precision. Sci Rep 2024;14:9347.

69. Pecksen E, Tkachuk S, Schröder C, et al. Monocytes prevent apoptosis of iPSCs and promote differentiation of kidney organoids. Stem Cell Res Ther 2024;15:132.

70. Matchett EC, Kornbluth J. Extracellular vesicles derived from immortalized human natural killer cell line NK3.3 as a novel therapeutic for multiple myeloma. Front Immunol 2023;14:1265101.

71. Livkisa D, Chang TH, Burnouf T, et al. Extracellular vesicles purified from serum-converted human platelet lysates offer strong protection after cardiac ischaemia/reperfusion injury. Biomaterials 2024;306:122502.

72. Koksal AR, Ekmen N, Aydin Y, et al. A single-step immunocapture assay to quantify HCC exosomes using the highly sensitive fluorescence nanoparticle-tracking analysis. J Hepatocell Carcinoma 2023;10:1935-54.

73. Wang Z, Dai J, He H, et al. Cellulose nanofibrils of high immunoaffinity for efficient enrichment of small extracellular vesicles. Small Methods 2024;8:e2400426.

74. Kaur M, Fusco S, Van den Broek B, et al. Most recent advances and applications of extracellular vesicles in tackling neurological challenges. Med Res Rev 2024;44:1923-66.

75. Hanson B, Vorobieva I, Zheng W, et al. EV-mediated promotion of myogenic differentiation is dependent on dose, collection medium, and isolation method. Mol Ther Nucleic Acids 2023;33:511-28.

76. Zheng T, Hao H, Liu Q, et al. Effect of extracelluar vesicles derived from Akkermansia muciniphila on intestinal barrier in colitis mice. Nutrients 2023;15:4722.

77. Yang Z, Liang Z, Rao J, et al. Mesenchymal stem cell-derived extracellular vesicles therapy in traumatic central nervous system diseases: a systematic review and meta-analysis. Neural Regen Res 2023;18:2406-12.

78. de Pedro MÁ, López E, González-Nuño FM, et al. Menstrual blood-derived mesenchymal stromal cells: impact of preconditioning on the cargo of extracellular vesicles as potential therapeutics. Stem Cell Res Ther 2023;14:187.

79. Bathini S, Pakkiriswami S, Ouellette RJ, Ghosh A, Packirisamy M. Magnetic particle based liquid biopsy chip for isolation of extracellular vesicles and characterization by gene amplification. Biosens Bioelectron 2021;194:113585.

80. Chattrairat K, Yasui T, Suzuki S, et al. All-in-one nanowire assay system for capture and analysis of extracellular vesicles from an ex vivo brain tumor model. ACS Nano 2023;17:2235-44.

81. Zhang T, Xie Z, Zheng X, et al. CRISPR-Cas12a powered hybrid nanoparticle for extracellular vesicle aggregation and in-situ microRNA detection. Biosens Bioelectron 2024;245:115856.

82. Zhou X, Miao Y, Wang Y, et al. Tumour-derived extracellular vesicle membrane hybrid lipid nanovesicles enhance siRNA delivery by tumour-homing and intracellular freeway transportation. J Extracell Vesicles 2022;11:e12198.

83. Liu Q, Li D, Pan X, Liang Y. Targeted therapy using engineered extracellular vesicles: principles and strategies for membrane modification. J Nanobiotechnology 2023;21:334.

84. Hao D, Lu L, Song H, et al. Engineered extracellular vesicles with high collagen-binding affinity present superior in situ retention and therapeutic efficacy in tissue repair. Theranostics 2022;12:6021-37.

85. Fei Z, Zheng J, Zheng X, Ren H, Liu G. Engineering extracellular vesicles for diagnosis and therapy. Trends Pharmacol Sci 2024;45:931-40.

86. Ma Y, Brocchini S, Williams GR. Extracellular vesicle-embedded materials. J Control Release 2023;361:280-96.

87. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 2011;29:341-5.

88. Tian Y, Li S, Song J, et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 2014;35:2383-90.

89. Farahani MS, Hosseini-Beheshti E, Moazzeni SM, Moghadam MF. Engineered extracellular vesicles expressing ICAM-1: a promising targeted delivery system for T cell modifications. Biochim Biophys Acta Gen Subj 2024;1868:130541.

90. Cheng Q, Shi X, Han M, Smbatyan G, Lenz HJ, Zhang Y. Reprogramming exosomes as nanoscale controllers of cellular immunity. J Am Chem Soc 2018;140:16413-7.

91. Shi X, Cheng Q, Hou T, et al. Genetically engineered cell-derived nanoparticles for targeted breast cancer immunotherapy. Mol Ther 2020;28:536-47.

92. Liang G, Kan S, Zhu Y, Feng S, Feng W, Gao S. Engineered exosome-mediated delivery of functionally active miR-26a and its enhanced suppression effect in HepG2 cells. Int J Nanomedicine 2018;13:585-99.

93. Ran N, Gao X, Dong X, et al. Effects of exosome-mediated delivery of myostatin propeptide on functional recovery of mdx mice. Biomaterials 2020;236:119826.

94. Nonaka T. Application of engineered extracellular vesicles to overcome drug resistance in cancer. Front Oncol 2022;12:1070479.

95. Johnson V, Vasu S, Kumar US, Kumar M. Surface-engineered extracellular vesicles in cancer immunotherapy. Cancers 2023;15:2838.

96. Mohammadi AH, Ghazvinian Z, Bagheri F, Harada M, Baghaei K. Modification of extracellular vesicle surfaces: an approach for targeted drug delivery. BioDrugs 2023;37:353-74.

97. Wu P, Zhang B, Ocansey DKW, Xu W, Qian H. Extracellular vesicles: a bright star of nanomedicine. Biomaterials 2021;269:120467.

98. Tian T, Zhang HX, He CP, et al. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials 2018;150:137-49.

99. S S, Camardo A, Dahal S, Ramamurthi A. Surface-functionalized stem cell-derived extracellular vesicles for vascular elastic matrix regenerative repair. Mol Pharm 2023;20:2801-13.

100. Nie W, Wu G, Zhang J, et al. Responsive exosome nano-bioconjugates for synergistic cancer therapy. Angew Chem Int Ed Engl 2020;59:2018-22.

101. Liu HM, Zhang Y. Folic acid-decorated astrocytes-derived exosomes enhanced the effect of temozolomide against glioma. Kaohsiung J Med Sci 2024;40:435-44.

102. Kooijmans SAA, Fliervoet LAL, van der Meel R, et al. PEGylated and targeted extracellular vesicles display enhanced cell specificity and circulation time. J Control Release 2016;224:77-85.

103. Kooijmans SA, Aleza CG, Roffler SR, van Solinge WW, Vader P, Schiffelers RM. Display of GPI-anchored anti-EGFR nanobodies on extracellular vesicles promotes tumour cell targeting. J Extracell Vesicles 2016;5:31053.

104. Wang Y, Chen X, Tian B, et al. Nucleolin-targeted extracellular vesicles as a versatile platform for biologics delivery to breast cancer. Theranostics 2017;7:1360-72.

105. Royo F, Cossío U, Ruiz de Angulo A, Llop J, Falcon-Perez JM. Modification of the glycosylation of extracellular vesicles alters their biodistribution in mice. Nanoscale 2019;11:1531-7.

106. Shou J, Li S, Shi W, et al. 3WJ RNA nanoparticles-aptamer functionalized exosomes from M2 macrophages target BMSCs to promote the healing of bone fractures. Stem Cells Transl Med 2023;12:758-74.

107. Nakase I, Futaki S. Combined treatment with a pH-sensitive fusogenic peptide and cationic lipids achieves enhanced cytosolic delivery of exosomes. Sci Rep 2015;5:10112.

108. Huang T, Sato Y, Kuramochi A, et al. Surface modulation of extracellular vesicles with cell-penetrating peptide-conjugated lipids for improvement of intracellular delivery to endothelial cells. Regen Ther 2023;22:90-8.

109. Lin SW, Tsai JC, Shyong YJ. Drug delivery of extracellular vesicles: preparation, delivery strategies and applications. Int J Pharm 2023;642:123185.

110. Zheng D, Ruan H, Chen W, et al. Advances in extracellular vesicle functionalization strategies for tissue regeneration. Bioact Mater 2023;25:500-26.

111. Roerig J, Schulz-Siegmund M. Standardization approaches for extracellular vesicle loading with oligonucleotides and biologics. Small 2023;19:e2301763.

112. Chen C, Li Y, Wang Q, Cai N, Wu L, Yan X. Single-particle assessment of six different drug-loading strategies for incorporating doxorubicin into small extracellular vesicles. Anal Bioanal Chem 2023;415:1287-98.

113. Song J, Song B, Yuan L, Yang G. Multiplexed strategies toward clinical translation of extracellular vesicles. Theranostics 2022;12:6740-61.

114. Chandler K, Millar J, Ward G, et al. Imaging of light-enhanced extracellular vesicle-mediated delivery of oxaliplatin to colorectal cancer cells via laser ablation, inductively coupled plasma mass spectrometry. Cells 2023;13:24.

115. Sancho-Albero M, Encabo-Berzosa MDM, Beltrán-Visiedo M, et al. Efficient encapsulation of theranostic nanoparticles in cell-derived exosomes: leveraging the exosomal biogenesis pathway to obtain hollow gold nanoparticle-hybrids. Nanoscale 2019;11:18825-36.

116. Faruque H, Choi ES, Kim JH, Kim E. Enhanced effect of autologous EVs delivering paclitaxel in pancreatic cancer. J Control Release 2022;347:330-46.

117. Yang X, Shi G, Guo J, Wang C, He Y. Exosome-encapsulated antibiotic against intracellular infections of methicillin-resistant Staphylococcus aureus. Int J Nanomedicine 2018;13:8095-104.

118. Chen SY, Chen YL, Li PC, et al. Engineered extracellular vesicles carrying let-7a-5p for alleviating inflammation in acute lung injury. J Biomed Sci 2024;31:30.

119. Zhang Y, Liu Z, Chopp M, et al. Small extracellular vesicles derived from cerebral endothelial cells with elevated microRNA 27a promote ischemic stroke recovery. Neural Regen Res 2025;20:224-33.

120. Qu M, Liu X, Wang X, Li Z, Zhou L, Li H. Palmitoylation of vacuole membrane protein 1 promotes small extracellular vesicle secretion via interaction with ALIX and influences intercellular communication. Cell Commun Signal 2024;22:150.

121. Nebogatova J, Härk HH, Puskar A, et al. A method for using cell-penetrating peptides for loading plasmid DNA into secreted extracellular vesicles. Biomolecules 2023;13:1751.

122. Zou A, Xiao T, Chi B, et al. Engineered exosomes with growth differentiation factor-15 overexpression enhance cardiac repair after myocardial injury. Int J Nanomedicine 2024;19:3295-314.

123. Wu Y, Yao X, Shi X, et al. Myeloma extracellular vesicle-derived RAGE increases inflammatory responses and myotube atrophy in multiple myeloma through activation of the TLR4/NF-κB p65 pathway. Apoptosis 2024;29:849-64.

124. Chiang CL, Ma Y, Hou YC, et al. Dual targeted extracellular vesicles regulate oncogenic genes in advanced pancreatic cancer. Nat Commun 2023;14:6692.

125. Wang X, Hu S, Zhu D, Li J, Cheng K, Liu G. Comparison of extruded cell nanovesicles and exosomes in their molecular cargos and regenerative potentials. Nano Res 2023;16:7248-59.

126. Sun L, Fan M, Huang D, et al. Clodronate-loaded liposomal and fibroblast-derived exosomal hybrid system for enhanced drug delivery to pulmonary fibrosis. Biomaterials 2021;271:120761.

127. Zhang W, Wang L, Guo H, Chen L, Huang X. Dapagliflozin-loaded exosome mimetics facilitate diabetic wound healing by HIF-1α-mediated enhancement of angiogenesis. Adv Healthc Mater 2023;12:e2202751.

128. Zhang L, Fan C, Hao W, et al. NSCs migration promoted and drug delivered exosomes-collagen scaffold via a bio-specific peptide for one-step spinal cord injury repair. Adv Healthc Mater 2021;10:e2001896.

129. Fu P, Guo Y, Luo Y, et al. Visualization of microRNA therapy in cancers delivered by small extracellular vesicles. J Nanobiotechnology 2023;21:457.

130. Du J, Wan Z, Wang C, et al. Designer exosomes for targeted and efficient ferroptosis induction in cancer via chemo-photodynamic therapy. Theranostics 2021;11:8185-96.

131. Wang P, Wang H, Huang Q, et al. Exosomes from M1-polarized macrophages enhance paclitaxel antitumor activity by activating macrophages-mediated inflammation. Theranostics 2019;9:1714-27.

132. Haney MJ, Klyachko NL, Harrison EB, Zhao Y, Kabanov AV, Batrakova EV. TPP1 delivery to lysosomes with extracellular vesicles and their enhanced brain distribution in the animal model of batten disease. Adv Healthc Mater 2019;8:e1801271.

133. Wu C, Xiang S, Wang H, et al. Orally deliverable sequence-targeted fucoxanthin-loaded biomimetic extracellular vesicles for alleviation of nonalcoholic fatty liver disease. ACS Appl Mater Interfaces 2024;16:9854-67.

134. Lee C, Kumar S, Park J, Choi Y, Clarissa EM, Cho YK. Tonicity-induced cargo loading into extracellular vesicles. Lab Chip 2024;24:2069-79.

135. Santos NL, Bustos SO, Reis PP, Chammas R, Andrade LNS. Extracellular vesicle-packaged miR-195-5p sensitizes melanoma to targeted therapy with kinase inhibitors. Cells 2023;12:1317.

136. Draguet F, Dubois N, Bouland C, et al. Extracellular vesicles derived from human umbilical cord mesenchymal stromal cells as an efficient nanocarrier to deliver siRNA or drug to pancreatic cancer cells. Cancers 2023;15:2901.

137. Kammala AK, Mosebarger A, Radnaa E, et al. Extracellular vesicles-mediated recombinant IL-10 protects against ascending infection-associated preterm birth by reducing fetal inflammatory response. Front Immunol 2023;14:1196453.

138. Rabienezhad Ganji N, Urzì O, Tinnirello V, et al. Proof-of-concept study on the use of tangerine-derived nanovesicles as siRNA delivery vehicles toward colorectal cancer cell line SW480. Int J Mol Sci 2023;25:546.

139. Rong Y, Wang Z, Tang P, et al. Engineered extracellular vesicles for delivery of siRNA promoting targeted repair of traumatic spinal cord injury. Bioact Mater 2023;23:328-42.

140. Liu W, Liu A, Li X, et al. Dual-engineered cartilage-targeting extracellular vesicles derived from mesenchymal stem cells enhance osteoarthritis treatment via miR-223/NLRP3/pyroptosis axis: toward a precision therapy. Bioact Mater 2023;30:169-83.

141. Zhang S, Liang Y, Ji P, et al. Truncated PD1 engineered gas-producing extracellular vesicles for ultrasound imaging and subsequent degradation of PDL1 in tumor cells. Adv Sci 2024;11:e2305891.

142. Zhu S, Huang H, Liu D, Wen S, Shen L, Lin Q. Augmented cellular uptake and homologous targeting of exosome-based drug loaded IOL for posterior capsular opacification prevention and biosafety improvement. Bioact Mater 2022;15:469-81.

143. Wu G, Zhang J, Zhao Q, et al. Molecularly engineered macrophage-derived exosomes with inflammation tropism and intrinsic heme biosynthesis for atherosclerosis treatment. Angew Chem Int Ed Engl 2020;59:4068-74.

144. Lennaárd AJ, Mamand DR, Wiklander RJ, El Andaloussi S, Wiklander OPB. Optimised electroporation for loading of extracellular vesicles with doxorubicin. Pharmaceutics 2021;14:38.

145. Pan X, Huang P, Ali SS, et al. CRISPR-Cas9 engineered extracellular vesicles for the treatment of dominant progressive hearing loss. bioRxiv 2023. Available from https://www.biorxiv.org/content/10.1101/2023.09.14.557853v2 [accessed 12 December 2024].

146. Dumontel B, Susa F, Limongi T, et al. Nanotechnological engineering of extracellular vesicles for the development of actively targeted hybrid nanodevices. Cell Biosci 2022;12:61.

147. Zattoni IF, Delabio LC, Dutra JP, et al. Targeting breast cancer resistance protein (BCRP/ABCG2): functional inhibitors and expression modulators. Eur J Med Chem 2022;237:114346.

148. Zhang L, Li Y, Wang Q, et al. The PI3K subunits, P110α and P110β are potential targets for overcoming P-gp and BCRP-mediated MDR in cancer. Mol Cancer 2020;19:10.

149. Zhang L, Li Y, Hu C, et al. CDK6-PI3K signaling axis is an efficient target for attenuating ABCB1/P-gp mediated multi-drug resistance (MDR) in cancer cells. Mol Cancer 2022;21:103.

150. Dakhlaoui I, Vahdati S, Maalej E, et al. Synthesis and biological assessment of new pyrimidopyrimidines as inhibitors of breast cancer resistance protein (ABCG2). Bioorg Chem 2021;116:105326.

151. Goebel J, Chmielewski J, Hrycyna CA. The roles of the human ATP-binding cassette transporters P-glycoprotein and ABCG2 in multidrug resistance in cancer and at endogenous sites: future opportunities for structure-based drug design of inhibitors. Cancer Drug Resist 2021;4:784-804.

152. Zhang H, Xu H, Ashby CR Jr, Assaraf YG, Chen ZS, Liu HM. Chemical molecular-based approach to overcome multidrug resistance in cancer by targeting P-glycoprotein (P-gp). Med Res Rev 2021;41:525-55.

153. da Silva Zanzarini I, Henrique Kita D, Scheiffer G, et al. Magnolol derivatives as specific and noncytotoxic inhibitors of breast cancer resistance protein (BCRP/ABCG2). Bioorg Chem 2024;146:107283.

154. Puris E, Fricker G, Gynther M. The role of solute carrier transporters in efficient anticancer drug delivery and therapy. Pharmaceutics 2023;15:364.

155. Brouwer KLR, Evers R, Hayden E, et al. Regulation of drug transport proteins-from mechanisms to clinical impact: a white paper on behalf of the international transporter consortium. Clin Pharmacol Ther 2022;112:461-84.

156. Zhou S, Shu Y. Transcriptional regulation of solute carrier (SLC) drug transporters. Drug Metab Dispos 2022;50:1238-50.

157. Huttunen J, Tampio J, Järvinen J, Montaser AB, Markowicz-Piasecka M, Huttunen KM. Amino acid derivative of probenecid potentiates apoptosis-inducing effects of vinblastine by increasing oxidative stress in a cancer cell-specific manner. Chem Biol Interact 2024;388:110833.

158. Oh JM, Ahn BC. Molecular mechanisms of radioactive iodine refractoriness in differentiated thyroid cancer: impaired sodium iodide symporter (NIS) expression owing to altered signaling pathway activity and intracellular localization of NIS. Theranostics 2021;11:6251-77.

159. Ullmann TM, Liang H, Moore MD, et al. Dual inhibition of BRAF and MEK increases expression of sodium iodide symporter in patient-derived papillary thyroid cancer cells in vitro. Surgery 2020;167:56-63.

160. Ogiwara H, Takahashi K, Sasaki M, et al. Targeting the vulnerability of glutathione metabolism in ARID1A-deficient cancers. Cancer Cell 2019;35:177-90.e8.

161. Momparler RL. Biochemical pharmacology of cytosine arabinoside. Med Pediatr Oncol 1982;10 Suppl 1:45-8.

162. Kawahara B, Faull KF, Janzen C, Mascharak PK. Carbon monoxide inhibits cytochrome P450 enzymes CYP3A4/2C8 in human breast cancer cells, increasing sensitivity to paclitaxel. J Med Chem 2021;64:8437-46.

163. Hachey AC, Fenton AD, Heidary DK, Glazer EC. Design of cytochrome P450 1B1 inhibitors via a scaffold-hopping approach. J Med Chem 2023;66:398-412.

164. Hu C, Shen L, Zou F, et al. Predicting and overcoming resistance to CDK9 inhibitors for cancer therapy. Acta Pharm Sin B 2023;13:3694-707.

165. Meng S, Wu H, Wang J, Qiu Q. Systematic analysis of tyrosine kinase inhibitor response to RET gatekeeper mutations in thyroid cancer. Mol Inform 2016;35:495-505.

166. Hanker AB, Brown BP, Meiler J, et al. Co-occurring gain-of-function mutations in HER2 and HER3 modulate HER2/HER3 activation, oncogenesis, and HER2 inhibitor sensitivity. Cancer Cell 2021;39:1099-114.e8.

167. Zhao S, Fang W, Pan H, et al. Conformational landscapes of HER2 Exon 20 insertions explain their sensitivity to kinase inhibitors in lung adenocarcinoma. J Thorac Oncol 2020;15:962-72.

168. Wood KC. Mapping the pathways of resistance to targeted therapies. Cancer Res 2015;75:4247-51.

169. Wang D, Fu Z, Gao L, et al. Increased IRF9-STAT2 signaling leads to adaptive resistance toward targeted therapy in melanoma by restraining GSDME-dependent pyroptosis. J Invest Dermatol 2022;142:2476-87.e9.

170. Kobayashi Y, Lim SO, Yamaguchi H. Oncogenic signaling pathways associated with immune evasion and resistance to immune checkpoint inhibitors in cancer. Semin Cancer Biol 2020;65:51-64.

171. Klener P, Sovilj D, Renesova N, Andera L. BH3 mimetics in hematologic malignancies. Int J Mol Sci 2021;22:10157.

172. Marelli M, Beretta G, Moretti RM. Necroptosis induced by delta-tocotrienol overcomes docetaxel chemoresistance in prostate cancer cells. Int J Mol Sci 2023;24:4923.

173. Shi ZD, Pang K, Wu ZX, et al. Tumor cell plasticity in targeted therapy-induced resistance: mechanisms and new strategies. Signal Transduct Target Ther 2023;8:113.

174. Yang C, Ma S, Zhang J, et al. EHMT2-mediated transcriptional reprogramming drives neuroendocrine transformation in non-small cell lung cancer. Proc Natl Acad Sci U S A 2024;121:e2317790121.

175. Qin S, Xu L, Yi M, Yu S, Wu K, Luo S. Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4. Mol Cancer 2019;18:155.

176. Wang H, Liu B, Wei J. Beta2-microglobulin(B2M) in cancer immunotherapies: biological function, resistance and remedy. Cancer Lett 2021;517:96-104.

177. Lin W, Chen L, Zhang H, et al. Tumor-intrinsic YTHDF1 drives immune evasion and resistance to immune checkpoint inhibitors via promoting MHC-I degradation. Nat Commun 2023;14:265.

178. Joung J, Kirchgatterer PC, Singh A, et al. CRISPR activation screen identifies BCL-2 proteins and B3GNT2 as drivers of cancer resistance to T cell-mediated cytotoxicity. Nat Commun 2022;13:1606.

179. Zhong F, Lin Y, Zhao L, Yang C, Ye Y, Shen Z. Reshaping the tumour immune microenvironment in solid tumours via tumour cell and immune cell DNA methylation: from mechanisms to therapeutics. Br J Cancer 2023;129:24-37.

180. Lorenzo-Sanz L, Lopez-Cerda M, da Silva-Diz V, et al. Cancer cell plasticity defines response to immunotherapy in cutaneous squamous cell carcinoma. Nat Commun 2024;15:5352.

181. Guelfi S, Hodivala-Dilke K, Bergers G. Targeting the tumour vasculature: from vessel destruction to promotion. Nat Rev Cancer 2024;24:655-75.

182. Sattiraju A, Kang S, Giotti B, et al. Hypoxic niches attract and sequester tumor-associated macrophages and cytotoxic T cells and reprogram them for immunosuppression. Immunity 2023;56:1825-43.e6.

183. Zhang T, Jia Y, Yu Y, Zhang B, Xu F, Guo H. Targeting the tumor biophysical microenvironment to reduce resistance to immunotherapy. Adv Drug Deliv Rev 2022;186:114319.

184. Goswami S, Anandhan S, Raychaudhuri D, Sharma P. Myeloid cell-targeted therapies for solid tumours. Nat Rev Immunol 2023;23:106-20.

185. Li N, Kang Y, Wang L, et al. ALKBH5 regulates anti-PD-1 therapy response by modulating lactate and suppressive immune cell accumulation in tumor microenvironment. Proc Natl Acad Sci U S A 2020;117:20159-70.

186. Chow A, Perica K, Klebanoff CA, Wolchok JD. Clinical implications of T cell exhaustion for cancer immunotherapy. Nat Rev Clin Oncol 2022;19:775-90.

187. Andrews LP, Butler SC, Cui J, et al. LAG-3 and PD-1 synergize on CD8+ T cells to drive T cell exhaustion and hinder autocrine IFN-γ-dependent anti-tumor immunity. Cell 2024;187:4355-72.e22.

188. Aspe JR, Diaz Osterman CJ, Jutzy JM, Deshields S, Whang S, Wall NR. Enhancement of Gemcitabine sensitivity in pancreatic adenocarcinoma by novel exosome-mediated delivery of the Survivin-T34A mutant. J Extracell Vesicles 2014:3.

189. Lou G, Chen L, Xia C, et al. MiR-199a-modified exosomes from adipose tissue-derived mesenchymal stem cells improve hepatocellular carcinoma chemosensitivity through mTOR pathway. J Exp Clin Cancer Res 2020;39:4.

190. Xu Y, Liu N, Wei Y, et al. Anticancer effects of miR-124 delivered by BM-MSC derived exosomes on cell proliferation, epithelial mesenchymal transition, and chemotherapy sensitivity of pancreatic cancer cells. Aging 2020;12:19660-76.

191. Jia Z, Zhu H, Sun H, et al. Adipose mesenchymal stem cell-derived exosomal microRNA-1236 reduces resistance of breast cancer cells to cisplatin by suppressing SLC9A1 and the Wnt/β-catenin signaling. Cancer Manag Res 2020;12:8733-44.

192. Qiu L, Wang J, Chen M, Chen F, Tu W. Exosomal microRNA-146a derived from mesenchymal stem cells increases the sensitivity of ovarian cancer cells to docetaxel and taxane via a LAMC2-mediated PI3K/Akt axis. Int J Mol Med 2020;46:609-20.

193. Wu H, Mu X, Liu L, et al. Bone marrow mesenchymal stem cells-derived exosomal microRNA-193a reduces cisplatin resistance of non-small cell lung cancer cells via targeting LRRC1. Cell Death Dis 2020;11:801.

194. Munoz JL, Bliss SA, Greco SJ, Ramkissoon SH, Ligon KL, Rameshwar P. Delivery of functional anti-miR-9 by mesenchymal stem cell-derived exosomes to glioblastoma multiforme cells conferred chemosensitivity. Mol Ther Nucleic Acids 2013;2:e126.

195. Yu L, Gui S, Liu Y, et al. Exosomes derived from microRNA-199a-overexpressing mesenchymal stem cells inhibit glioma progression by down-regulating AGAP2. Aging 2019;11:5300-18.

196. Sharif S, Ghahremani MH, Soleimani M. Delivery of exogenous miR-124 to glioblastoma multiform cells by wharton’s jelly mesenchymal stem cells decreases cell proliferation and migration, and confers chemosensitivity. Stem Cell Rev Rep 2018;14:236-46.

197. Li P, Cao G, Huang Y, et al. siMTA1-loaded exosomes enhanced chemotherapeutic effect of gemcitabine in Luminal-b type breast cancer by inhibition of EMT/HIF-α and autophagy pathways. Front Oncol 2020;10:541262.

198. Lin D, Zhang H, Liu R, et al. iRGD-modified exosomes effectively deliver CPT1A siRNA to colon cancer cells, reversing oxaliplatin resistance by regulating fatty acid oxidation. Mol Oncol 2021;15:3430-46.

199. Zeng A, Wei Z, Yan W, et al. Exosomal transfer of miR-151a enhances chemosensitivity to temozolomide in drug-resistant glioblastoma. Cancer Lett 2018;436:10-21.

200. Zhao Z, Shuang T, Gao Y, et al. Targeted delivery of exosomal miR-484 reprograms tumor vasculature for chemotherapy sensitization. Cancer Lett 2022;530:45-58.

201. Wang X, Zhang H, Bai M, et al. Exosomes serve as nanoparticles to deliver anti-miR-214 to reverse chemoresistance to cisplatin in gastric cancer. Mol Ther 2018;26:774-83.

202. Ji R, Zhang X, Gu H, et al. Mir-374a-5p: a new target for diagnosis and drug resistance therapy in gastric cancer. Mol Ther Nucleic Acids 2019;18:320-31.

203. Sayyed AA, Gondaliya P, Mali M, et al. MiR-155 inhibitor-laden exosomes reverse resistance to cisplatin in a 3D tumor spheroid and xenograft model of oral cancer. Mol Pharm 2021;18:3010-25.

204. Bose RJC, Uday Kumar S, Zeng Y, et al. Tumor cell-derived extracellular vesicle-coated nanocarriers: an efficient theranostic platform for the cancer-specific delivery of anti-miR-21 and imaging agents. ACS Nano 2018;12:10817-32.

205. Hui B, Lu C, Wang J, et al. Engineered exosomes for co-delivery of PGM5-AS1 and oxaliplatin to reverse drug resistance in colon cancer. J Cell Physiol 2022;237:911-33.

206. Xu Y, Qiu A, Peng F, Tan X, Wang J, Gong X. Exosomal transfer of circular RNA FBXW7 ameliorates the chemoresistance to oxaliplatin in colorectal cancer by sponging miR-18b-5p. Neoplasma 2021;68:108-18.

207. Zhou Y, Zhou W, Chen X, et al. Bone marrow mesenchymal stem cells-derived exosomes for penetrating and targeted chemotherapy of pancreatic cancer. Acta Pharm Sin B 2020;10:1563-75.

208. Zhang X, Liu L, Tang M, Li H, Guo X, Yang X. The effects of umbilical cord-derived macrophage exosomes loaded with cisplatin on the growth and drug resistance of ovarian cancer cells. Drug Dev Ind Pharm 2020;46:1150-62.

209. Li L, He D, Guo Q, et al. Exosome-liposome hybrid nanoparticle codelivery of TP and miR497 conspicuously overcomes chemoresistant ovarian cancer. J Nanobiotechnology 2022;20:50.

210. Liu J, Ye Z, Xiang M, et al. Functional extracellular vesicles engineered with lipid-grafted hyaluronic acid effectively reverse cancer drug resistance. Biomaterials 2019;223:119475.

211. Lv Q, Cheng L, Lu Y, et al. Thermosensitive exosome-liposome hybrid nanoparticle-mediated chemoimmunotherapy for improved treatment of metastatic peritoneal cancer. Adv Sci 2020;7:2000515.

212. Liang G, Zhu Y, Ali DJ, et al. Engineered exosomes for targeted co-delivery of miR-21 inhibitor and chemotherapeutics to reverse drug resistance in colon cancer. J Nanobiotechnology 2020;18:10.

213. Kim MS, Haney MJ, Zhao Y, et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine 2016;12:655-64.

214. Bellavia D, Raimondo S, Calabrese G, et al. Interleukin 3- receptor targeted exosomes inhibit in vitro and in vivo chronic myelogenous leukemia cell growth. Theranostics 2017;7:1333-45.

215. Liu Y, Song B, Wei Y, et al. Exosomes from mesenchymal stromal cells enhance imatinib-induced apoptosis in human leukemia cells via activation of caspase signaling pathway. Cytotherapy 2018;20:181-8.

216. Li H, Yang C, Shi Y, Zhao L. Exosomes derived from siRNA against GRP78 modified bone-marrow-derived mesenchymal stem cells suppress Sorafenib resistance in hepatocellular carcinoma. J Nanobiotechnology 2018;16:103.

217. Xu J, Ji L, Liang Y, et al. CircRNA-SORE mediates sorafenib resistance in hepatocellular carcinoma by stabilizing YBX1. Signal Transduct Target Ther 2020;5:298.

218. Wu L, Xie W, Li Y, et al. Biomimetic nanocarriers guide extracellular ATP homeostasis to remodel energy metabolism for activating innate and adaptive immunity system. Adv Sci 2022;9:e2105376.

219. Zhou W, Zhou Y, Chen X, et al. Pancreatic cancer-targeting exosomes for enhancing immunotherapy and reprogramming tumor microenvironment. Biomaterials 2021;268:120546.

220. Kurniawati I, Liu MC, Hsieh CL, Do AD, Sung SY. Targeting castration-resistant prostate cancer using mesenchymal stem cell exosomes for therapeutic microRNA-let-7c delivery. Front Biosci 2022;27:256.

221. Dauer P, Sharma NS, Gupta VK, et al. ER stress sensor, glucose regulatory protein 78 (GRP78) regulates redox status in pancreatic cancer thereby maintaining “stemness”. Cell Death Dis 2019;10:132.

222. Kalbasi A, Ribas A. Tumour-intrinsic resistance to immune checkpoint blockade. Nat Rev Immunol 2020;20:25-39.

223. Deng J, Ke H. Overcoming the resistance of hepatocellular carcinoma to PD-1/PD-L1 inhibitor and the resultant immunosuppression by CD38 siRNA-loaded extracellular vesicles. Oncoimmunology 2023;12:2152635.

224. Ranganathan P, Chakrabarty A, Hiscox S, Limaye AM, Vella V. Editorial: resistance to endocrine therapies in cancer. Front Endocrinol 2020;11:196.

Cancer Drug Resistance
ISSN 2578-532X (Online)

Portico

All published articles will preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles will preserved here permanently:

https://www.portico.org/publishers/oae/