REFERENCES

1. Ferlay J, Colombet M, Soerjomataram I, et al. Cancer statistics for the year 2020: an overview. Int J Cancer 2021;149:778-89.

2. Turashvili G, Brogi E. Tumor heterogeneity in breast cancer. Front Med 2017;4:227.

3. Pu M, Messer K, Davies SR, et al. Research-based PAM50 signature and long-term breast cancer survival. Breast Cancer Res Tr 2020;179:197-206.

4. Almstedt K, Mendoza S, Otto M, et al. EndoPredict® in early hormone receptor-positive, HER2-negative breast cancer. Breast Cancer Res Tr 2020;182:137-46.

5. Buus R, Sestak I, Kronenwett R, et al. Molecular drivers of oncotype dx, prosigna, endopredict, and the breast cancer index: a transATAC study. J Clin Oncol 2021;39:126-35.

6. Korde LA, Somerfield MR, Carey LA, et al. Neoadjuvant chemotherapy, endocrine therapy, and targeted therapy for breast cancer: ASCO guideline. J Clin Oncol 2021;39:1485-505.

7. Hyder T, Bhattacharya S, Gade K, Nasrazadani A, Brufsky AM. Approaching neoadjuvant therapy in the management of early-stage breast cancer. Breast Cancer 2021;13:199-211.

8. Zaheed M, Wilcken N, Willson ML, O’Connell DL, Goodwin A. Sequencing of anthracyclines and taxanes in neoadjuvant and adjuvant therapy for early breast cancer. Cochrane Database Syst Rev 2019;2:CD012873.

9. Shandilya M, Sharma S, Prasad Das P, Charak S. Molecular-level understanding of the anticancer action mechanism of anthracyclines. In: Advances in Precision Medicine Oncology; IntechOpen, 2020.

10. Emadi A, Jones RJ, Brodsky RA. Cyclophosphamide and cancer: golden anniversary. Nat Rev Clin Oncol 2009;6:638-47.

11. McGrogan BT, Gilmartin B, Carney DN, McCann A. Taxanes, microtubules and chemoresistant breast cancer. Biochim Biophys Acta 2008;1785:96-132.

12. Samaan TM, Samec M, Liskova A, Kubatka P, Büsselberg D. Paclitaxel’s mechanistic and clinical effects on breast cancer. Biomolecules 2019;9:789.

13. Maloney SM, Hoover CA, Morejon-Lasso LV, Prosperi JR. Mechanisms of taxane resistance. Cancers 2020;12:3323.

14. Hu W, Tan C, He Y, Zhang G, Xu Y, Tang J. Functional miRNAs in breast cancer drug resistance. Onco Targets Ther 2018;11:1529-41.

15. Zhou M, Liu Z, Zhao Y, et al. MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) expression. J Biol Chem 2010;285:21496-507.

16. Wang W, Zhang L, Wang Y, et al. Involvement of miR-451 in resistance to paclitaxel by regulating YWHAZ in breast cancer. Cell Death Dis 2017;8:e3071.

17. Song Y, Zhang M, Lu MM, et al. EPAS1 targeting by miR-152-3p in paclitaxel-resistant breast cancer. J Cancer 2020;11:5822-30.

18. Li Y, Zhang L, Dong Z, et al. MicroRNA-155-5p promotes tumor progression and contributes to paclitaxel resistance via TP53INP1 in human breast cancer. Pathol Res Pract 2021;220:153405.

19. Tang X, Jin L, Cao P, et al. MicroRNA-16 sensitizes breast cancer cells to paclitaxel through suppression of IKBKB expression. Oncotarget 2016;7:23668-83.

20. Geng W, Song H, Zhao Q, et al. MiR-520h stimulates drug resistance to paclitaxel by targeting the otud3-pten axis in breast cancer. Biomed Res Int 2020;2020:9512793.

21. Uhr K, Prager-van der Smissen WJC, Heine AAJ, et al. MicroRNAs as possible indicators of drug sensitivity in breast cancer cell lines. PLoS One 2019;14:e0216400.

22. Wu J, Zhang Y, Li M. Identification of genes and miRNAs in paclitaxel treatment for breast cancer. Gynecol Endocrinol 2021;37:65-71.

23. Gaffney EV. A cell line (HBL-100) established from human breast milk. Cell Tissue Res 1982;227:563-8.

24. Capes-Davis A, Theodosopoulos G, Atkin I, et al. Check your cultures! A list of cross-contaminated or misidentified cell lines†. Int J Cancer 2010;127:1-8.

25. Yoshino K, Iimura E, Saijo K, et al. Essential role for gene profiling analysis in the authentication of human cell lines. Hum Cell 2006;19:43-8.

26. Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013;29:15-21.

27. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014;15:550.

28. Androvic P, Valihrach L, Elling J, Sjoback R, Kubista M. Two-tailed RT-qPCR: a novel method for highly accurate miRNA quantification. Nucleic Acids Res 2017;45:e144.

29. Dai X, Cheng H, Bai Z, Li J. Breast cancer cell line classification and its relevance with breast tumor subtyping. J Cancer 2017;8:3131-41.

30. Lacroix M, Leclercq G. Relevance of breast cancer cell lines as models for breast tumours: an update. Breast Cancer Res Treat 2004;83:249-89.

31. Holliday DL, Speirs V. Choosing the right cell line for breast cancer research. Breast Cancer Res 2011;13:215.

32. Neve RM, Chin K, Fridlyand J, et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 2006;10:515-27.

33. Kao J, Salari K, Bocanegra M, et al. Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery. PLoS One 2009;4:e6146.

34. Wopereis S, Walter LO, Vieira DSC, et al. Evaluation of ER, PR and HER2 markers by flow cytometry for breast cancer diagnosis and prognosis. Clin Chim Acta 2021;523:504-12.

35. Luo Y, Wang X, Niu W, et al. Elevated microRNA-125b levels predict a worse prognosis in HER2-positive breast cancer patients. Oncol Lett 2017;13:867-74.

36. Zhang H, Zhang XY, Kang XN, Jin LJ, Wang ZY. LncRNA-SNHG7 enhances chemotherapy resistance and cell viability of breast cancer cells by regulating miR-186. Cancer Manag Res 2020;12:10163-72.

37. Sharma S, Nagpal N, Ghosh PC, Kulshreshtha R. P53-miR-191-SOX4 regulatory loop affects apoptosis in breast cancer. RNA 2017;23:1237-46.

38. Safaei S, Amini M, Najjary S, et al. miR-200c increases the sensitivity of breast cancer cells to Doxorubicin through downregulating MDR1 gene. Exp Mol Pathol 2022;125:104753.

39. Xing AY, Wang B, Li YH, et al. Identification of miRNA signature in breast cancer to predict neoadjuvant chemotherapy response. Pathol Oncol Res 2021;27:1609753.

40. Ertürk E, Ari F, Akgün O, Ulukaya E, Küçükali Cİ, Zeybek Ü. Investigation of the efficacy of paclitaxel on some miRNAs profiles in breast cancer stem cells. Turk J Biol 2021;45:613-23.

41. Gong JP, Yang L, Tang JW, et al. Overexpression of microRNA-24 increases the sensitivity to paclitaxel in drug-resistant breast carcinoma cell lines via targeting ABCB9. Oncol Lett 2016;12:3905-11.

42. Gasparini P, Cascione L, Fassan M, et al. microRNA expression profiling identifies a four microRNA signature as a novel diagnostic and prognostic biomarker in triple negative breast cancers. Oncotarget 2014;5:1174-84.

43. García-Vazquez R, Ruiz-García E, Meneses García A, et al. A microRNA signature associated with pathological complete response to novel neoadjuvant therapy regimen in triple-negative breast cancer. Tumour Biol 2017;39:1010428317702899.

44. Irani S, Paknejad M, Soleimani M, Azam S. Evaluation of miR-34a effect on CCND1 mRNA level and sensitization of breast cancer cell lines to paclitaxel. Iran Biomed J 2020;24:361-9.

45. Hong T, Ding J, Li W. miR-7 reverses breast cancer resistance to chemotherapy by targeting MRP1 And BCL2. Onco Targets Ther 2019;12:11097-105.

46. Asaduzzaman M, Constantinou S, Min H, et al. Tumour suppressor EP300, a modulator of paclitaxel resistance and stemness, is downregulated in metaplastic breast cancer. Breast Cancer Res Treat 2017;163:461-74.

47. Bao C, Chen J, Chen D, et al. MiR-93 suppresses tumorigenesis and enhances chemosensitivity of breast cancer via dual targeting E2F1 and CCND1. Cell Death Dis 2020;11:618.

48. Tulyandin СА, Zhukova LG, Koroleva IA, et al. Clinical guidelines for systemic therapy of the breast cancer. Malig. tumours 2021;11:119-57.(in Russian).

49. Huang P, Li F, Mo Z, et al. A comprehensive RNA study to identify circRNA and miRNA biomarkers for docetaxel resistance in breast cancer. Front Oncol 2021;11:669270.

50. Amorim M, Lobo J, Fontes-Sousa M, et al. Predictive and prognostic value of selected micrornas in luminal breast cancer. Front Genet 2019;10:815.

51. Martín M, Rodríguez-Lescure A, Ruiz A, et al. Randomized phase 3 trial of fluorouracil, epirubicin, and cyclophosphamide alone or followed by paclitaxel for early breast cancer. J Natl Cancer Inst 2008;100:805-14.

52. Martín M, Rodríguez-Lescure A, Ruiz A, et al. Molecular predictors of efficacy of adjuvant weekly paclitaxel in early breast cancer. Breast Cancer Res Treat 2010;123:149-57.

53. Xiang Y, Tian Q, Guan L, Niu SS. The dual role of miR-186 in cancers: oncomir battling with tumor suppressor miRNA. Front Oncol 2020;10:233.

54. Wang Z, Sha HH, Li HJ. Functions and mechanisms of miR-186 in human cancer. Biomed Pharmacother 2019;119:109428.

55. Hamurcu Z, Sener EF, Taheri S, et al. MicroRNA profiling identifies Forkhead box transcription factor M1 (FOXM1) regulated miR-186 and miR-200b alterations in triple negative breast cancer. Cell Signal 2021;83:109979.

56. Ye J, Zhang Z, Sun L, Fang Y, Xu X, Zhou G. miR-186 regulates chemo-sensitivity to paclitaxel via targeting MAPT in non-small cell lung cancer (NSCLC). Mol Biosyst 2016;12:3417-24.

57. Sun KX, Jiao JW, Chen S, Liu BL, Zhao Y. MicroRNA-186 induces sensitivity of ovarian cancer cells to paclitaxel and cisplatin by targeting ABCB1. J Ovarian Res 2015;8:80.

58. Cui X, Sun Y, Shen M, et al. Enhanced chemotherapeutic efficacy of paclitaxel nanoparticles co-delivered with microrna-7 by inhibiting paclitaxel-induced egfr/erk pathway activation for ovarian cancer therapy. ACS Appl Mater Interfaces 2018;10:7821-31.

59. Liu R, Liu X, Zheng Y, et al. MicroRNA-7 sensitizes non-small cell lung cancer cells to paclitaxel. Oncol Lett 2014;8:2193-200.

60. Xu CZ, Shi RJ, Chen D, et al. Potential biomarkers for paclitaxel sensitivity in hypopharynx cancer cell. Int J Clin Exp Pathol 2013;6:2745-56.

Cancer Drug Resistance
ISSN 2578-532X (Online)

Portico

All published articles will preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles will preserved here permanently:

https://www.portico.org/publishers/oae/