REFERENCES
1. Gottesman MM, Robey RW, Ambudkar SV. New mechanisms of multidrug resistance: an introduction to the cancer drug resistance special collection. Cancer Drug Resist 2023;6:590-5.
2. Bushweller JH. Targeting transcription factors in cancer - from undruggable to reality. Nat Rev Cancer 2019;19:611-24.
3. Vervoort SJ, Devlin JR, Kwiatkowski N, Teng M, Gray NS, Johnstone RW. Targeting transcription cycles in cancer. Nat Rev Cancer 2022;22:5-24.
4. Chen B, Dragomir MP, Yang C, Li Q, Horst D, Calin GA. Targeting non-coding RNAs to overcome cancer therapy resistance. Signal Transduct Target Ther 2022;7:121.
5. Planey SL, Kumar R, Arnott JA. Post-translational modification of transcription factors: mechanisms and potential therapeutic interventions. Curr Mol Pharmacol 2013;6:173-82.
6. Vishnoi K, Viswakarma N, Rana A, Rana B. Transcription factors in cancer development and therapy. Cancers 2020;12:2296.
7. Martínez-Martín S, Soucek L. MYC inhibitors in multiple myeloma. Cancer Drug Resist 2021;4:842-65.
8. Martínez-Martín S, Beaulieu ME, Soucek L. Targeting MYC-driven lymphoma: lessons learned and future directions. Cancer Drug Resist 2023;6:205-22.
9. Singleton KR, Crawford L, Tsui E, et al. Melanoma therapeutic strategies that select against resistance by exploiting MYC-driven evolutionary convergence. Cell Rep 2017;21:2796-812.
10. Cicirò Y, Sala A. MYB oncoproteins: emerging players and potential therapeutic targets in human cancer. Oncogenesis 2021;10:19.
11. Anand S, Vikramdeo KS, Sudan SK, et al. From modulation of cellular plasticity to potentiation of therapeutic resistance: new and emerging roles of MYB transcription factors in human malignancies. Cancer Metastasis Rev 2024;43:409-21.
12. Nakagoshi H, Kanei-Ishii C, Sawazaki T, Mizuguchi G, Ishii S. Transcriptional activation of the c-myc gene by the c-myb and B-myb gene products. Oncogene 1992;7:1233-40.
13. Duesberg PH, Bister K, Moscovici C. Genetic structure of avian myeloblastosis virus, released from transformed myeloblasts as a defective virus particle. Proc Natl Acad Sci USA 1980;77:5120-4.
14. Klempnauer KH, Ramsay G, Bishop JM, et al. The product of the retroviral transforming gene v-myb is a truncated version of the protein encoded by the cellular oncogene c-myb. Cell 1983;33:345-55.
15. Davidson CJ, Guthrie EE, Lipsick JS. Duplication and maintenance of the Myb genes of vertebrate animals. Biol Open 2013;2:101-10.
16. Lipsick JS, Manak J, Mitiku N, Chen CK, Fogarty P, Guthrie E. Functional evolution of the Myb oncogene family. Blood Cells Mol Dis 2001;27:456-8.
17. Ogata K, Hojo H, Aimoto S, et al. Solution structure of a DNA-binding unit of Myb: a helix-turn-helix-related motif with conserved tryptophans forming a hydrophobic core. Proc Natl Acad Sci U S A 1992;89:6428-32.
18. Biedenkapp H, Borgmeyer U, Sippel AE, Klempnauer KH. Viral myb oncogene encodes a sequence-specific DNA-binding activity. Nature 1988;335:835-7.
19. Quintana AM, Liu F, O’Rourke JP, Ness SA. Identification and regulation of c-Myb target genes in MCF-7 cells. BMC Cancer 2011;11:30.
20. George OL, Ness SA. Situational awareness: regulation of the myb transcription factor in differentiation, the cell cycle and oncogenesis. Cancers 2014;6:2049-71.
21. Ness SA. Myb binding proteins: regulators and cohorts in transformation. Oncogene 1999;18:3039-46.
22. Jin Y, Qi G, Chen G, Wang C, Fan X. Association between B-Myb proto-oncogene and the development of malignant tumors. Oncol Lett 2021;21:166.
23. Anand S, Khan MA, Zubair H, et al. MYB sustains hypoxic survival of pancreatic cancer cells by facilitating metabolic reprogramming. EMBO Rep 2023;24:e55643.
24. Okumura F, Joo-Okumura A, Nakatsukasa K, Kamura T. Hypoxia-inducible factor-2α stabilizes the von Hippel-Lindau (VHL) disease suppressor, Myb-related protein 2. PLoS One 2017;12:e0175593.
25. Zhang Q, Yang H. The roles of VHL-dependent ubiquitination in signaling and cancer. Front Oncol 2012;2:35.
26. Felipe-Abrio B, Verdugo-Sivianes EM, Carnero A. c-MYB- and PGC1a-dependent metabolic switch induced by MYBBP1A loss in renal cancer. Mol Oncol 2019;13:1519-33.
27. Felipe-Abrio B, Carnero A. The tumor suppressor roles of MYBBP1A, a major contributor to metabolism plasticity and stemness. Cancers 2020;12:254.
28. Liu M, Du Q, Mao G, Dai N, Zhang F. MYB proto-oncogene like 2 promotes hepatocellular carcinoma growth and glycolysis via binding to the Optic atrophy 3 promoter and activating its expression. Bioengineered 2022;13:5344-56.
29. Yamauchi T, Ishidao T, Nomura T, et al. A B-Myb complex containing clathrin and filamin is required for mitotic spindle function. EMBO J 2008;27:1852-62.
30. Sahara S, Herzog AE, Nör JE. Systemic therapies for salivary gland adenoid cystic carcinoma. Am J Cancer Res 2021;11:4092-110.
32. Sharma I, Sharma A, Tomer R, Negi N, Sobti RC. History, evolution, milestones in cancer research and treatment. In: Sobti RC, Ganguly NK, Kumar R, editors. Handbook of oncobiology: from basic to clinical sciences. Singapore: Springer; 2023. pp. 1-29.
34. Dilruba S, Kalayda GV. Platinum-based drugs: past, present and future. Cancer Chemother Pharmacol 2016;77:1103-24.
35. Rescigno P, Ottaviano M, Palmieri G. Platinum drug sensitivity and resistance in testicular germ cell tumors: two sides of the same coin. Cancer Drug Resist 2020;3:672-5.
36. Perego P. Tackling cisplatin resistance in ovarian cancer: what can we do? Cancer Drug Resist 2021;4:755-7.
37. Funato T, Satou J, Kozawa K, Fujimaki S, Miura T, Kaku M. Use of c-myb antisense oligonucleotides to increase the sensitivity of human colon cancer cells to cisplatin. Oncol Rep 2001;8:807-10.
38. Miree O, Srivastava SK, Khan MA, et al. Clinicopathologic significance and race-specific prognostic association of MYB overexpression in ovarian cancer. Sci Rep 2021;11:12901.
39. Tian M, Tian D, Qiao X, Li J, Zhang L. Modulation of Myb-induced NF-kB -STAT3 signaling and resulting cisplatin resistance in ovarian cancer by dietary factors. J Cell Physiol 2019;234:21126-34.
40. Xue Y, Wu T, Sheng Y, Zhong Y, Hu B, Bao C. MicroRNA-1252-5p, regulated by Myb, inhibits invasion and epithelial-mesenchymal transition of pancreatic cancer cells by targeting NEDD9. Aging 2021;13:18924-45.
41. Wang Y, Zhang CY, Xia RH, et al. The MYB/miR-130a/NDRG2 axis modulates tumor proliferation and metastatic potential in salivary adenoid cystic carcinoma. Cell Death Dis 2018;9:917.
42. Liu W, Fan L, Shao B, Zhang Y. STAT3 promotes migration and invasion of cholangiocarcinoma arising from choledochal cyst by transcriptionally inhibiting miR200c through the c-myb/MEK/ERK signaling pathway. Cell Mol Biol 2023;69:136-42.
43. Dúcka M, Kučeríková M, Trčka F, et al. c-Myb interferes with inflammatory IL1α-NF-κB pathway in breast cancer cells. Neoplasia 2021;23:326-36.
44. Zhang XY, Li YF, Ma H, Gao YH. Regulation of MYB mediated cisplatin resistance of ovarian cancer cells involves miR-21-wnt signaling axis. Sci Rep 2020;10:6893.
45. Zhou X, Liu M, Deng G, et al. lncRNA LOC102724169 plus cisplatin exhibit the synergistic anti-tumor effect in ovarian cancer with chronic stress. Mol Ther Nucleic Acids 2021;24:294-309.
46. Bu C, Xu L, Han Y, et al. c-Myb protects cochlear hair cells from cisplatin-induced damage via the PI3K/Akt signaling pathway. Cell Death Discov 2022;8:78.
47. Warner KA, Oklejas AE, Pearson AT, et al. UM-HACC-2A: MYB-NFIB fusion-positive human adenoid cystic carcinoma cell line. Oral Oncol 2018;87:21-8.
48. Long J, Zhu B, Tian T, et al. Activation of UBEC2 by transcription factor MYBL2 affects DNA damage and promotes gastric cancer progression and cisplatin resistance. Open Med 2023;18:20230757.
49. Guan X, Meng X, Zhu K, et al. MYSM1 induces apoptosis and sensitizes TNBC cells to cisplatin via RSK3-phospho-BAD pathway. Cell Death Discov 2022;8:84.
50. Niklaus NJ, Humbert M, Tschan MP. Cisplatin sensitivity in breast cancer cells is associated with particular DMTF1 splice variant expression. Biochem Biophys Res Commun 2018;503:2800-6.
51. MacDonald J, Ramos-Valdes Y, Perampalam P, Litovchick L, DiMattia GE, Dick FA. A systematic analysis of negative growth control implicates the DREAM complex in cancer cell dormancy. Mol Cancer Res 2017;15:371-81.
52. Sampurno S, Bijenhof A, Cheasley D, et al. The Myb-p300-CREB axis modulates intestine homeostasis, radiosensitivity and tumorigenesis. Cell Death Dis 2013;4:e605.
53. Liu F, Wang Y, Cao Y, et al. Transcription factor B-MYB activates lncRNA CCAT1 and upregulates SOCS3 to promote chemoresistance in colorectal cancer. Chem Biol Interact 2023;374:110412.
54. Kadioglu O, Saeed M, Mahmoud N, et al. Identification of potential novel drug resistance mechanisms by genomic and transcriptomic profiling of colon cancer cells with p53 deletion. Arch Toxicol 2021;95:959-74.
55. Pekarčíková L, Knopfová L, Beneš P, Šmarda J. c-Myb regulates NOX1/p38 to control survival of colorectal carcinoma cells. Cell Signal 2016;28:924-36.
56. Mattioli R, Ilari A, Colotti B, Mosca L, Fazi F, Colotti G. Doxorubicin and other anthracyclines in cancers: activity, chemoresistance and its overcoming. Mol Aspects Med 2023;93:101205.
57. Melani C, Rivoltini L, Parmiani G, Calabretta B, Colombo MP. Inhibition of proliferation by c-myb antisense oligodeoxynucleotides in colon adenocarcinoma cell lines that express c-myb. Cancer Res 1991;51:2897-901.
58. Sarvaiya PJ, Schwartz JR, Hernandez CP, Rodriguez PC, Vedeckis WV. Role of c-Myb in the survival of pre B-cell acute lymphoblastic leukemia and leukemogenesis. Am J Hematol 2012;87:969-76.
59. Elcheva IA, Wood T, Chiarolanzio K, et al. RNA-binding protein IGF2BP1 maintains leukemia stem cell properties by regulating HOXB4, MYB, and ALDH1A1. Leukemia 2020;34:1354-63.
60. Říhová K, Dúcka M, Zambo IS, et al. Transcription factor c-Myb: novel prognostic factor in osteosarcoma. Clin Exp Metastasis 2022;39:375-90.
61. Thorner AR, Hoadley KA, Parker JS, Winkel S, Millikan RC, Perou CM. In vitro and in vivo analysis of B-Myb in basal-like breast cancer. Oncogene 2009;28:742-51.
62. Grassilli E, Salomoni P, Perrotti D, Franceschi C, Calabretta B. Resistance to apoptosis in CTLL-2 cells overexpressing B-Myb is associated with B-Myb-dependent bcl-2 induction. Cancer Res 1999;59:2451-6.
63. Inoue K, Fry EA. Tumor suppression by the EGR1, DMP1, ARF, p53, and PTEN Network. Cancer Invest 2018;36:520-36.
64. Taneja P, Mallakin A, Matise LA, Frazier DP, Choudhary M, Inoue K. Repression of Dmp1 and Arf transcription by anthracyclins: critical roles of the NF-kappaB subunit p65. Oncogene 2007;26:7457-66.
66. Lotz C, Lamour V. The interplay between DNA topoisomerase 2α post-translational modifications and drug resistance. Cancer Drug Resist 2020;3:149-60.
67. Tanno B, Sesti F, Cesi V, et al. Expression of Slug is regulated by c-Myb and is required for invasion and bone marrow homing of cancer cells of different origin. J Biol Chem 2010;285:29434-45.
68. Levenson VV, Davidovich IA, Roninson IB. Pleiotropic resistance to DNA-interactive drugs is associated with increased expression of genes involved in DNA replication, repair, and stress response. Cancer Res 2000;60:5027-30.
69. Singh N, Miner A, Hennis L, Mittal S. Mechanisms of temozolomide resistance in glioblastoma - a comprehensive review. Cancer Drug Resist 2021;4:17-43.
70. Siebzehnrubl FA, Silver DJ, Tugertimur B, et al. The ZEB1 pathway links glioblastoma initiation, invasion and chemoresistance. EMBO Mol Med 2013;5:1196-212.
71. Pieraccioli M, Imbastari F, Antonov A, Melino G, Raschellà G. Activation of miR200 by c-Myb depends on ZEB1 expression and miR200 promoter methylation. Cell Cycle 2013;12:2309-20.
72. Hugo HJ, Pereira L, Suryadinata R, et al. Direct repression of MYB by ZEB1 suppresses proliferation and epithelial gene expression during epithelial-to-mesenchymal transition of breast cancer cells. Breast Cancer Res 2013;15:R113.
73. Bhise NS, Chauhan L, Shin M, et al. MicroRNA-mRNA pairs associated with outcome in AML: from in vitro cell-based studies to AML patients. Front Pharmacol 2015;6:324.
74. Paik J. Olaparib: A review as first-line maintenance therapy in advanced ovarian cancer. Target Oncol 2021;16:847-56.
75. Qi G, Zhang C, Ma H, et al. CDCA8, targeted by MYBL2, promotes malignant progression and olaparib insensitivity in ovarian cancer. Am J Cancer Res 2021;11:389-415.
76. Li L, Chang W, Yang G, et al. Targeting poly(ADP-ribose) polymerase and the c-Myb-regulated DNA damage response pathway in castration-resistant prostate cancer. Sci Signal 2014;7:ra47.
77. Murray V, Chen JK, Chung LH. The interaction of the metallo-glycopeptide anti-tumour drug bleomycin with DNA. Int J Mol Sci 2018;19:1372.
78. Robertson KA, Bullock HA, Xu Y, et al. Altered expression of Ape1/ref-1 in germ cell tumors and overexpression in NT2 cells confers resistance to bleomycin and radiation. Cancer Res 2001;61:2220-5.
79. Kim TE, Chang JE. Recent studies in photodynamic therapy for cancer treatment: from basic research to clinical trials. Pharmaceutics 2023;15:2257.
80. Hui YJ, Chen H, Peng XC, et al. Up-regulation of ABCG2 by MYBL2 deletion drives chlorin e6-mediated photodynamic therapy resistance in colorectal cancer. Photodiagnosis Photodyn Ther 2023;42:103558.
81. Mo W, Zhang JT. Human ABCG2: structure, function, and its role in multidrug resistance. Int J Biochem Mol Biol 2012;3:1-27.
82. Škubník J, Pavlíčková VS, Ruml T, Rimpelová S. Vincristine in combination therapy of cancer: emerging trends in clinics. Biology 2021;10:849.
83. Chen L, Xu X, Wang J, et al. [Spectrum of gene expression of a multi-drug resistant leukemia cell line with high tumorigenecity in nude mice]. Zhonghua Zhong Liu Za Zhi 2005;27:196-200. (in Chinese).
84. Mosca L, Ilari A, Fazi F, Assaraf YG, Colotti G. Taxanes in cancer treatment: activity, chemoresistance and its overcoming. Drug Resist Updat 2021;54:100742.
85. Chen L, Song Y, Hou T, et al. Circ_0004087 interaction with SND1 promotes docetaxel resistance in prostate cancer by boosting the mitosis error correction mechanism. J Exp Clin Cancer Res 2022;41:194.
86. Wei Y, Yang C, Wei J, Li W, Qin Y, Liu G. Identification and verification of microtubule associated genes in lung adenocarcinoma. Sci Rep 2023;13:16134.
87. Hunsu VO, Facey COB, Fields JZ, Boman BM. Retinoids as chemo-preventive and molecular-targeted anti-cancer therapies. Int J Mol Sci 2021;22:7731.
88. Smarda J, Zemanová K, Bryja J, et al. Retinoid X receptor suppresses transformation by the v-myb oncogene. J Leukoc Biol 1999;66:1039-48.
89. Benes P, Macecková V, Zatloukalová J, Kovárová L, Smardová J, Smarda J. Retinoic acid enhances differentiation of v-myb-transformed monoblasts induced by okadaic acid. Leuk Res 2007;31:1421-31.
90. Trčka F, Šmarda J, Knopfová L, Kuziaková K, Beneš P. Nuclear factor of activated T-cells 1 increases sensitivity of v-myb transformed monoblasts to all-trans retinoic acid. Cell Signal 2013;25:1546-55.
91. Cesi V, Tanno B, Vitali R, et al. Cyclin D1-dependent regulation of B-myb activity in early stages of neuroblastoma differentiation. Cell Death Differ 2002;9:1232-9.
92. Olivas-Aguirre M, Torres-López L, Pottosin I, Dobrovinskaya O. Overcoming glucocorticoid resistance in acute lymphoblastic leukemia: repurposed drugs can improve the protocol. Front Oncol 2021;11:617937.
93. Jing D, Bhadri VA, Beck D, et al. Opposing regulation of BIM and BCL2 controls glucocorticoid-induced apoptosis of pediatric acute lymphoblastic leukemia cells. Blood 2015;125:273-83.
94. Salomoni P, Perrotti D, Martinez R, Franceschi C, Calabretta B. Resistance to apoptosis in CTLL-2 cells constitutively expressing c-Myb is associated with induction of BCL-2 expression and Myb-dependent regulation of the bcl-2 promoter activity. Proc Natl Acad Sci USA 1997;94:3296-301.
95. Geng CD, Vedeckis WV. Use of recombinant cell-permeable small peptides to modulate glucocorticoid sensitivity of acute lymphoblastic leukemia cells. Biochemistry 2010;49:8892-901.
96. Kfir-Erenfeld S, Haggiag N, Biton M, Stepensky P, Assayag-Asherie N, Yefenof E. miR-103 inhibits proliferation and sensitizes hemopoietic tumor cells for glucocorticoid-induced apoptosis. Oncotarget 2017;8:472-89.
97. Drabsch Y, Hugo H, Zhang R, et al. Mechanism of and requirement for estrogen-regulated MYB expression in estrogen-receptor-positive breast cancer cells. Proc Natl Acad Sci U S A 2007;104:13762-7.
99. Gao Y, Zhang W, Liu C, Li G. miR-200 affects tamoxifen resistance in breast cancer cells through regulation of MYB. Sci Rep 2019;9:18844.
100. Hodges LC, Cook JD, Lobenhofer EK, et al. Tamoxifen functions as a molecular agonist inducing cell cycle-associated genes in breast cancer cells. Mol Cancer Res 2003;1:300-11.
101. Li X, Zhang X, Wu CC, et al. The role of MYB proto-oncogene like 2 in tamoxifen resistance in breast cancer. J Mol Histol 2021;52:21-30.
103. Lee J, Hirsh AS, Wittner BS, et al. Induction of stable drug resistance in human breast cancer cells using a combinatorial zinc finger transcription factor library. PLoS One 2011;6:e21112.
104. Edavana VK, Penney RB, Yao-Borengasser A, et al. Fulvestrant up regulates UGT1A4 and MRPs through ERα and c-Myb pathways: a possible primary drug disposition mechanism. Springerplus 2013;2:620.
105. Edwards J, Krishna NS, Witton CJ, Bartlett JMS. Gene amplifications associated with the development of hormone-resistant prostate cancer. Clin Cancer Res 2003;9:5271-81.
107. Srivastava SK, Bhardwaj A, Singh S, et al. Myb overexpression overrides androgen depletion-induced cell cycle arrest and apoptosis in prostate cancer cells, and confers aggressive malignant traits: potential role in castration resistance. Carcinogenesis 2012;33:1149-57.
108. Li Q, Wang M, Hu Y, et al. MYBL2 disrupts the Hippo-YAP pathway and confers castration resistance and metastatic potential in prostate cancer. Theranostics 2021;11:5794-812.
109. Srivastava SK, Khan MA, Anand S, et al. MYB interacts with androgen receptor, sustains its ligand-independent activation and promotes castration resistance in prostate cancer. Br J Cancer 2022;126:1205-14.
110. de Bono JS, Logothetis CJ, Molina A, et al; COU-AA-301 Investigators. Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med 2011;364:1995-2005.
111. Blatti C, de la Fuente J, Gao H, et al. Bayesian machine learning enables identification of transcriptional network disruptions associated with drug-resistant prostate cancer. Cancer Res 2023;83:1361-80.
112. Baudino TA. Targeted cancer therapy: the next generation of cancer treatment. Curr Drug Discov Technol 2015;12:3-20.
113. Nepali K, Liou JP. Recent developments in epigenetic cancer therapeutics: clinical advancement and emerging trends. J Biomed Sci 2021;28:27.
114. Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol 2020;20:651-68.
115. Steins M, Thomas M, Geißler M. Erlotinib. In: Martens U, editor. Small molecules in oncology. Recent Results in Cancer Research. Cham: Springer; 2018. pp. 1-17.
116. García-Foncillas J, Sunakawa Y, Aderka D, et al. Distinguishing features of cetuximab and panitumumab in colorectal cancer and other solid tumors. Front Oncol 2019;9:849.
117. Liang L, Liu M, Sun X, et al. Identification of key genes involved in tumor immune cell infiltration and cetuximab resistance in colorectal cancer. Cancer Cell Int 2021;21:135.
118. Iida M, Brand TM, Campbell DA, Li C, Wheeler DL. Yes and Lyn play a role in nuclear translocation of the epidermal growth factor receptor. Oncogene 2013;32:759-67.
119. Garnock-Jones KP, Keating GM, Scott LJ. Trastuzumab: a review of its use as adjuvant treatment in human epidermal growth factor receptor 2 (HER2)-positive early breast cancer. Drugs 2010;70:215-39.
120. Rezaei Z, Dastjerdi K, Allahyari A, et al. Plasma microRNA-195, -34c, and -1246 as novel biomarkers for the diagnosis of trastuzumab-resistant HER2-positive breast cancer patients. Toxicol Appl Pharmacol 2023;475:116652.
121. Iyer R, Fetterly G, Lugade A, Thanavala Y. Sorafenib: a clinical and pharmacologic review. Expert Opin Pharmacother 2010;11:1943-55.
122. Zhu J, Wu Y, Yu Y, Li Y, Shen J, Zhang R. MYBL1 induces transcriptional activation of ANGPT2 to promote tumor angiogenesis and confer sorafenib resistance in human hepatocellular carcinoma. Cell Death Dis 2022;13:727.
123. Okumura F, Uematsu K, Byrne SD, et al. Parallel regulation of von hippel-lindau disease by pVHL-mediated degradation of B-Myb and hypoxia-inducible factor α. Mol Cell Biol 2016;36:1803-17.
124. Kanei-Ishii C, Nomura T, Takagi T, Watanabe N, Nakayama KI, Ishii S. Fbxw7 acts as an E3 ubiquitin ligase that targets c-Myb for nemo-like kinase (NLK)-induced degradation. J Biol Chem 2008;283:30540-8.
125. Iqbal N, Iqbal N. Imatinib: a breakthrough of targeted therapy in cancer. Chemother Res Pract 2014;2014:357027.
126. Ohmine K, Nagai T, Tarumoto T, et al. Analysis of gene expression profiles in an imatinib-resistant cell line, KCL22/SR. Stem Cells 2003;21:315-21.
127. Corradini F, Cesi V, Bartella V, et al. Enhanced proliferative potential of hematopoietic cells expressing degradation-resistant c-Myb mutants. J Biol Chem 2005;280:30254-62.
128. Corradini F, Bussolari R, Cerioli D, Lidonnici MR, Calabretta B. A degradation-resistant c-Myb mutant cooperates with Bcl-2 in enhancing proliferative potential and survival of hematopoietic cells. Blood Cells Mol Dis 2007;39:292-6.
129. Cofre J, Menezes JR, Pizzatti L, Abdelhay E. Knock-down of Kaiso induces proliferation and blocks granulocytic differentiation in blast crisis of chronic myeloid leukemia. Cancer Cell Int 2012;12:28.
130. Srutova K, Curik N, Burda P, et al. BCR-ABL1 mediated miR-150 downregulation through MYC contributed to myeloid differentiation block and drug resistance in chronic myeloid leukemia. Haematologica 2018;103:2016-25.
131. Fehr A, Arvidsson G, Nordlund J, Lönnerholm G, Stenman G, Andersson MK. Increased MYB alternative promoter usage is associated with relapse in acute lymphoblastic leukemia. Genes Chromosomes Cancer 2023;62:597-606.
132. Horwitz SM, Feldman TA, Hess BT, et al. The novel SYK/JAK inhibitor cerdulatinib demonstrates good tolerability and clinical response in a phase 2a study in relapsed/refractory peripheral T-cell lymphoma and cutaneous T-cell lymphoma. Blood 2018;132:1001.
133. Tavakoli Shirazi P, Eadie LN, Page EC, Heatley SL, Bruning JB, White DL. Constitutive JAK/STAT signaling is the primary mechanism of resistance to JAKi in TYK2-rearranged acute lymphoblastic leukemia. Cancer Lett 2021;512:28-37.
134. Angius G, Tomao S, Stati V, Vici P, Bianco V, Tomao F. Prexasertib, a checkpoint kinase inhibitor: from preclinical data to clinical development. Cancer Chemother Pharmacol 2020;85:9-20.
135. Branigan TB, Kozono D, Schade AE, et al. MMB-FOXM1-driven premature mitosis is required for CHK1 inhibitor sensitivity. Cell Rep 2021;34:108808.
136. Chambers AE, Banerjee S, Chaplin T, et al. Histone acetylation-mediated regulation of genes in leukaemic cells. Eur J Cancer 2003;39:1165-75.
137. Drabsch Y, Robert RG, Gonda TJ. MYB suppresses differentiation and apoptosis of human breast cancer cells. Breast Cancer Res 2010;12:R55.
139. Peart MJ, Smyth GK, van Laar RK, et al. Identification and functional significance of genes regulated by structurally different histone deacetylase inhibitors. Proc Natl Acad Sci U S A 2005;102:3697-702.
140. Ye P, Zhao L, McGirr C, Gonda TJ. MYB down-regulation enhances sensitivity of U937 myeloid leukemia cells to the histone deacetylase inhibitor LBH589 in vitro and in vivo. Cancer Lett 2014;343:98-106.
141. Esfahani K, Roudaia L, Buhlaiga N, Del Rincon SV, Papneja N, Miller WH Jr. A review of cancer immunotherapy: from the past, to the present, to the future. Curr Oncol 2020;27:S87-97.
142. Millen R, Malaterre J, Cross RS, et al. Immunomodulation by MYB is associated with tumor relapse in patients with early stage colorectal cancer. Oncoimmunology 2016;5:e1149667.
143. Pan B, Wan T, Zhou Y, et al. The MYBL2-CCL2 axis promotes tumor progression and resistance to anti-PD-1 therapy in ovarian cancer by inducing immunosuppressive macrophages. Cancer Cell Int 2023;23:248.
144. Citro G, Perrotti D, Cucco C, et al. Inhibition of leukemia cell proliferation by receptor-mediated uptake of c-myb antisense oligodeoxynucleotides. Proc Natl Acad Sci U S A 1992;89:7031-5.
145. Citro G, Szczylik C, Ginobbi P, Zupi G, Calabretta B. Inhibition of leukaemia cell proliferation by folic acid-polylysine-mediated introduction of c-myb antisense oligodeoxynucleotides into HL-60 cells. Br J Cancer 1994;69:463-7.
146. Del Bufalo D, Cucco C, Leonetti C, et al. Effect of cisplatin and c-myb antisense phosphorothioate oligodeoxynucleotides combination on a human colon carcinoma cell line in vitro and in vivo. Br J Cancer 1996;74:387-93.
147. Hu D, Shao W, Liu L, et al. Intricate crosstalk between MYB and noncoding RNAs in cancer. Cancer Cell Int 2021;21:653.
148. Pham T, Carpinteri S, Sampurno S, et al. Novel vaccine targeting colonic adenoma: a pre-clinical model. J Gastrointest Surg 2019;23:626-33.
149. Cross RS, Malaterre J, Davenport AJ, et al. Therapeutic DNA vaccination against colorectal cancer by targeting the MYB oncoprotein. Clin Transl Immunology 2015;4:e30.
150. Pham T, Pereira L, Roth S, et al. First-in-human phase I clinical trial of a combined immune modulatory approach using TetMYB vaccine and Anti-PD-1 antibody in patients with advanced solid cancer including colorectal or adenoid cystic carcinoma: The MYPHISMO study protocol (NCT03287427). Contemp Clin Trials Commun 2019;16:100409.
151. Mahmood U, Bang A, Chen YH, et al. A randomized phase 2 study of pembrolizumab with or without radiation in patients with recurrent or metastatic adenoid cystic carcinoma. Int J Radiat Oncol Biol Phys 2021;109:134-44.
152. Cleymaet R, Vermassen T, Coopman R, Vermeersch H, De Keukeleire S, Rottey S. The therapeutic landscape of salivary gland malignancies-where are we now? Int J Mol Sci 2022;23:14891.
153. Dillon PM, Petroni GR, Horton BJ, et al. A phase II study of dovitinib in patients with recurrent or metastatic adenoid cystic carcinoma. Clin Cancer Res 2017;23:4138-45.
154. Tchekmedyian V, Sherman EJ, Dunn L, et al. Phase II study of lenvatinib in patients with progressive, recurrent or metastatic adenoid cystic carcinoma. J Clin Oncol 2019;37:1529-37.
155. Ho AL, Dunn L, Sherman EJ, et al. A phase II study of axitinib (AG-013736) in patients with incurable adenoid cystic carcinoma. Ann Oncol 2016;27:1902-8.
156. Locati LD, Perrone F, Cortelazzi B, et al. A phase II study of sorafenib in recurrent and/or metastatic salivary gland carcinomas: Translational analyses and clinical impact. Eur J Cancer 2016;69:158-65.
157. Couvreur K, Celine J, Marlies B, et al. Efficacy and toxicity of sorafenib in patients with adenoid cystic carcinoma of the head and neck: a case series of five patients. Acta Clin Belg 2020;75:362-9.
158. Zheng S, Li H, Lin Y, et al. Treatment response to eribulin and anlotinib in lung metastases from rare perianal adenoid cystic carcinoma: a case report. Anticancer Drugs 2022;33:e548-54.
159. Su N, Fang Y, Wang J, et al. Efficacy and safety of anlotinib in metastatic adenoid cystic carcinoma: a retrospective study. Transl Cancer Res 2022;11:2757-66.
160. Hanna GJ, Ahn MJ, Muzaffar J, et al. A phase II trial of rivoceranib, an oral vascular endothelial growth factor receptor 2 inhibitor, for recurrent or metastatic adenoid cystic carcinoma. Clin Cancer Res 2023;29:4555-63.
161. Ono J, Okada Y. Study of MYB-NFIB chimeric gene expression, tumor angiogenesis, and proliferation in adenoid cystic carcinoma of salivary gland. Odontology 2018;106:238-44.
162. Chen C, Choudhury S, Wangsa D, et al. A multiplex preclinical model for adenoid cystic carcinoma of the salivary gland identifies regorafenib as a potential therapeutic drug. Sci Rep 2017;7:11410.
163. Dai YH, Hung LY, Chen RY, Lai CH, Chang KC. ON 01910.Na inhibits growth of diffuse large B-cell lymphoma by cytoplasmic sequestration of sumoylated C-MYB/TRAF6 complex. Transl Res 2016;175:129-43.e13.
164. Sun B, Wang Y, Sun J, et al. Establishment of patient-derived xenograft models of adenoid cystic carcinoma to assess pre-clinical efficacy of combination therapy of a PI3K inhibitor and retinoic acid. Am J Cancer Res 2021;11:773-92.
165. Ladu S, Calvisi DF, Conner EA, Farina M, Factor VM, Thorgeirsson SS. E2F1 inhibits c-Myc-driven apoptosis via PIK3CA/Akt/mTOR and COX-2 in a mouse model of human liver cancer. Gastroenterology 2008;135:1322-32.
166. Hugo HJ, Saunders C, Ramsay RG, Thompson EW. New insights on COX-2 in chronic inflammation driving breast cancer growth and metastasis. J Mammary Gland Biol Neoplasia 2015;20:109-19.
167. Kim DW, Oh DY, Shin SH, et al. A multicenter phase II study of everolimus in patients with progressive unresectable adenoid cystic carcinoma. BMC Cancer 2014;14:795.
168. Harvey RD, Carthon BC, Lewis C, et al. Phase 1 safety and pharmacodynamic study of lenalidomide combined with everolimus in patients with advanced solid malignancies with efficacy signal in adenoid cystic carcinoma. Br J Cancer 2020;123:1228-34.
169. Zhang X, Lv QL, Huang YT, Zhang LH, Zhou HH. Akt/FoxM1 signaling pathway-mediated upregulation of MYBL2 promotes progression of human glioma. J Exp Clin Cancer Res 2017;36:105.
170. Biyanee A, Yusenko MV, Klempnauer KH. Src-family protein kinase inhibitors suppress MYB activity in a p300-dependent manner. Cells 2022;11:1162.
171. Murray HC, Miller K, Brzozowski JS, et al. Synergistic targeting of DNA-PK and KIT signaling pathways in KIT mutant acute myeloid leukemia. Mol Cell Proteomics 2023;22:100503.
172. Wong SJ, Karrison T, Hayes DN, et al. Phase II trial of dasatinib for recurrent or metastatic c-KIT expressing adenoid cystic carcinoma and for nonadenoid cystic malignant salivary tumors. Ann Oncol 2016;27:318-23.
173. Matsumura-Kimoto Y, Tsukamoto T, Shimura Y, et al. Serine-227 in the N-terminal kinase domain of RSK2 is a potential therapeutic target for mantle cell lymphoma. Cancer Med 2020;9:5185-99.
174. Soncini D, Orecchioni S, Ruberti S, et al. The new small tyrosine kinase inhibitor ARQ531 targets acute myeloid leukemia cells by disrupting multiple tumor-addicted programs. Haematologica 2020;105:2420-31.
175. Shirazi PT, Eadie LN, Heatley SL, et al. Exploring the oncogenic and therapeutic target potential of the MYB-TYK2 fusion gene in B-cell acute lymphoblastic leukemia. Cancer Gene Ther 2022;29:1140-52.
176. Zhang Y, Li J, Zhong H, et al. The JAK2 inhibitor TG101209 exhibits anti-tumor and chemotherapeutic sensitizing effects on Burkitt lymphoma cells by inhibiting the JAK2/STAT3/c-MYB signaling axis. Cell Death Discov 2021;7:268.
177. Andersson MK, Mangiapane G, Nevado PT, et al. ATR is a MYB regulated gene and potential therapeutic target in adenoid cystic carcinoma. Oncogenesis 2020;9:5.
178. Zhou F, Zhang L, van Laar T, van Dam H, Ten Dijke P. GSK3β inactivation induces apoptosis of leukemia cells by repressing the function of c-Myb. Mol Biol Cell 2011;22:3533-40.
179. Albert V, Piendl G, Yousseff D, et al. Protein kinase C targeting of luminal (T-47D), luminal/HER2-positive (BT474), and triple negative (HCC1806) breast cancer cells in-vitro with AEB071 (Sotrastaurin) is efficient but mediated by subtype specific molecular effects. Arch Gynecol Obstet 2022;306:1197-210.
180. Liu W, Wu M, Huang Z, et al. c-myb hyperactivity leads to myeloid and lymphoid malignancies in zebrafish. Leukemia 2017;31:222-33.
181. Ye Y, Yang X, Li F, Liu W, Zhang W, Huang Z. c-myb is involved in CML progression and is a therapeutic target in the zebrafish CML model. Animal Model Exp Med 2022;7:136-44.
182. De Dominici M, Porazzi P, Soliera AR, et al. Targeting CDK6 and BCL2 exploits the “MYB addiction” of Ph+ acute lymphoblastic leukemia. Cancer Res 2018;78:1097-109.
183. Mitra P, Yang RM, Sutton J, Ramsay RG, Gonda TJ. CDK9 inhibitors selectively target estrogen receptor-positive breast cancer cells through combined inhibition of MYB and MCL-1 expression. Oncotarget 2016;7:9069-83.
184. Chen HX, Sharon E. IGF-1R as an anti-cancer target--trials and tribulations. Chin J Cancer 2013;32:242-52.
185. Andersson MK, Åman P, Stenman G. IGF2/IGF1R signaling as a therapeutic target in MYB-positive adenoid cystic carcinomas and other fusion gene-driven tumors. Cells 2019;8:913.
186. Andersson MK, Afshari MK, Andrén Y, Wick MJ, Stenman G. Targeting the oncogenic transcriptional regulator MYB in adenoid cystic carcinoma by inhibition of IGF1R/AKT signaling. J Natl Cancer Inst 2017;109:djx017.
187. Pavlicek A, Lira ME, Lee NV, et al. Molecular predictors of sensitivity to the insulin-like growth factor 1 receptor inhibitor Figitumumab (CP-751,871). Mol Cancer Ther 2013;12:2929-39.
188. Calvo E, Soria JC, Ma WW, et al. A phase I clinical trial and independent patient-derived xenograft study of combined targeted treatment with dacomitinib and figitumumab in advanced solid tumors. Clin Cancer Res 2017;23:1177-85.
189. Parikh AS, Wizel A, Davis D, et al. Single-cell RNA sequencing identifies a paracrine interaction that may drive oncogenic notch signaling in human adenoid cystic carcinoma. Cell Rep 2022;41:111743.
190. Eliasz S, Liang S, Chen Y, et al. Notch-1 stimulates survival of lung adenocarcinoma cells during hypoxia by activating the IGF-1R pathway. Oncogene 2010;29:2488-98.
191. Brana I, Berger R, Golan T, et al. A parallel-arm phase I trial of the humanised anti-IGF-1R antibody dalotuzumab in combination with the AKT inhibitor MK-2206, the mTOR inhibitor ridaforolimus, or the NOTCH inhibitor MK-0752, in patients with advanced solid tumours. Br J Cancer 2014;111:1932-44.
192. Thompson MA, Rosenthal MA, Ellis SL, et al. c-Myb down-regulation is associated with human colon cell differentiation, apoptosis, and decreased Bcl-2 expression. Cancer Res 1998;58:5168-75.
193. Frech M, Teichler S, Feld C, et al. MYB induces the expression of the oncogenic corepressor SKI in acute myeloid leukemia. Oncotarget 2018;9:22423-35.
194. Vrana JA, Decker RH, Johnson CR, et al. Induction of apoptosis in U937 human leukemia cells by suberoylanilide hydroxamic acid (SAHA) proceeds through pathways that are regulated by Bcl-2/Bcl-XL, c-Jun, and p21CIP1, but independent of p53. Oncogene 1999;18:7016-25.
195. Claerhout S, Lim JY, Choi W, et al. Gene expression signature analysis identifies vorinostat as a candidate therapy for gastric cancer. PLoS One 2011;6:e24662.
196. Goncalves PH, Heilbrun LK, Barrett MT, et al. A phase 2 study of vorinostat in locally advanced, recurrent, or metastatic adenoid cystic carcinoma. Oncotarget 2017;8:32918-29.
197. Calzada A, Todoerti K, Donadoni L, et al; AGIMM Investigators. The HDAC inhibitor Givinostat modulates the hematopoietic transcription factors NFE2 and C-MYB in JAK2(V617F) myeloproliferative neoplasm cells. Exp Hematol 2012;40:634-45.e10.
198. Courdy C, Platteeuw L, Ducau C, et al. Targeting PP2A-dependent autophagy enhances sensitivity to ruxolitinib in JAK2V617F myeloproliferative neoplasms. Blood Cancer J 2023;13:106.
199. Yusenko MV, Klempnauer KH. Characterization of the MYB-inhibitory potential of the Pan-HDAC inhibitor LAQ824. BBA Adv 2022;2:100034.
200. Kaundal B, Srivastava AK, Dev A, Mohanbhai SJ, Karmakar S, Roy Choudhury S. Nanoformulation of EPZ011989 attenuates EZH2-c-Myb epigenetic interaction by proteasomal degradation in acute myeloid leukemia. Mol Pharm 2020;17:604-21.
201. Roe JS, Mercan F, Rivera K, Pappin DJ, Vakoc CR. BET bromodomain inhibition suppresses the function of hematopoietic transcription factors in acute myeloid leukemia. Mol Cell 2015;58:1028-39.
202. Bhagwat AS, Roe JS, Mok BYL, Hohmann AF, Shi J, Vakoc CR. BET bromodomain inhibition releases the mediator complex from select cis-regulatory elements. Cell Rep 2016;15:519-30.
203. Lim SL, Damnernsawad A, Shyamsunder P, et al. Proteolysis targeting chimeric molecules as therapy for multiple myeloma: efficacy, biomarker and drug combinations. Haematologica 2019;104:1209-20.
204. Rose AJ, Fleming MM, Francis JC, et al. Cell-type-specific tumour sensitivity identified with a bromodomain targeting PROTAC in adenoid cystic carcinoma. J Pathol 2024;262:37-49.
205. Liu Q, Liu H, Huang X, et al. A targetable MYBL2-ATAD2 axis governs cell proliferation in ovarian cancer. Cancer Gene Ther 2023;30:192-208.
206. Mandelbaum J, Shestopalov IA, Henderson RE, et al. Zebrafish blastomere screen identifies retinoic acid suppression of MYB in adenoid cystic carcinoma. J Exp Med 2018;215:2673-85.
207. Zhou MJ, Yang JJ, Ma TY, et al. Increased retinoic acid signaling decreases lung metastasis in salivary adenoid cystic carcinoma by inhibiting the noncanonical Notch1 pathway. Exp Mol Med 2023;55:597-611.
208. Hanna GJ, ONeill A, Cutler JM, et al. A phase II trial of all-trans retinoic acid (ATRA) in advanced adenoid cystic carcinoma. Oral Oncol 2021;119:105366.
209. Kasukabe T, Okabe-Kado J, Hozumi M, Honma Y. Inhibition by interleukin 4 of leukemia inhibitory factor-, interleukin 6-, and dexamethasone-induced differentiation of mouse myeloid leukemia cells: role of c-myc and junB proto-oncogenes. Cancer Res 1994;54:592-7.
210. Yang H, Dai X, Ai Z, et al. MicroRNA-16 regulates myeloblastosis oncogene expression to affect differentiation of acute leukemia cells. Clin Lab 2019;65.
211. Bandyopadhyay A, Palepu S, Dhamija P, et al. Safety and efficacy of Vitamin D3 supplementation with imatinib in chronic phase- chronic myeloid leukaemia: an exploratory randomized controlled trial. BMJ Open 2023;13:e066361.
212. Al-Ali L, Al-Ani RJ, Saleh MM, et al. Biological evaluation of combinations of tyrosine kinase inhibitors with Inecalcitol as novel treatments for human chronic myeloid leukemia. Saudi Pharm J 2024;32:101931.
213. Wilkins HR, Doucet K, Duke V, Morra A, Johnson N. Estrogen prevents sustained COLO-205 human colon cancer cell growth by inducing apoptosis, decreasing c-myb protein, and decreasing transcription of the anti-apoptotic protein bcl-2. Tumour Biol 2010;31:16-22.
214. Salisbury TB, Morris GZ, Tomblin JK, Chaudhry AR, Cook CR, Santanam N. Aryl hydrocarbon receptor ligands inhibit igf-ii and adipokine stimulated breast cancer cell proliferation. ISRN Endocrinol 2013;2013:104850.
215. Collins CT, Hess JL. Role of HOXA9 in leukemia: dysregulation, cofactors and essential targets. Oncogene 2016;35:1090-8.
216. Sonoda Y, Itoh M, Tohda S. Effects of HOXA9 inhibitor DB818 on the growth of acute myeloid leukaemia cells. Anticancer Res 2021;41:1841-7.
217. Gehringer F, Weissinger SE, Swier LJ, Möller P, Wirth T, Ushmorov A. FOXO1 confers maintenance of the dark zone proliferation and survival program and can be pharmacologically targeted in burkitt lymphoma. Cancers 2019;11:1427.
218. Zheng L, Feng Z, Tao S, et al. Destabilization of macrophage migration inhibitory factor by 4-IPP reduces NF-κB/P-TEFb complex-mediated c-Myb transcription to suppress osteosarcoma tumourigenesis. Clin Transl Med 2022;12:e652.
219. McSheehy PM, Gervasoni M, Lampasona V, Erba E, D’Incalci M. Studies of the differentiation properties of camptothecin in the human leukaemic cells K562. Eur J Cancer 1991;27:1406-11.
220. Li F, Zhou J, Xu M, Yuan G. Exploration of G-quadruplex function in c-Myb gene and its transcriptional regulation by topotecan. Int J Biol Macromol 2018;107:1474-9.
221. Liu Q, Wang Q, Lv C, et al. Brucine inhibits proliferation of glioblastoma cells by targeting the G-quadruplexes in the c-Myb promoter. J Cancer 2021;12:1990-9.
222. Zauli G, Voltan R, di Iasio MG, et al. miR-34a induces the downregulation of both E2F1 and B-Myb oncogenes in leukemic cells. Clin Cancer Res 2011;17:2712-24.
223. Sottile F, Gnemmi I, Cantilena S, D’Acunto WC, Sala A. A chemical screen identifies the chemotherapeutic drug topotecan as a specific inhibitor of the B-MYB/MYCN axis in neuroblastoma. Oncotarget 2012;3:535-45.
224. Li Y, Zhao D, Zhang W, et al. A novel camptothecin derivative, ZBH-01, exhibits superior antitumor efficacy than irinotecan by regulating the cell cycle. J Transl Med 2023;21:422.
225. Okuno K, Garg R, Yuan YC, Tokunaga M, Kinugasa Y, Goel A. Corrigendum: Berberine and oligomeric proanthocyanidins exhibit synergistic efficacy through regulation of PI3K-Akt signaling pathway in colorectal cancer. Front Oncol 2022;12:952180.
226. Schmidt TJ, Klempnauer KH. Natural products with antitumor potential targeting the MYB-C/EBPβ-p300 transcription module. Molecules 2022;27:2077.
227. Klempnauer KH. Transcription factor MYB as therapeutic target: current developments. Int J Mol Sci 2024;25:3231.
228. Uttarkar S, Dassé E, Coulibaly A, et al. Targeting acute myeloid leukemia with a small molecule inhibitor of the Myb/p300 interaction. Blood 2016;127:1173-82.
229. Clesham K, Walf-Vorderwülbecke V, Gasparoli L, et al. Identification of a c-MYB-directed therapeutic for acute myeloid leukemia. Leukemia 2022;36:1541-9.
230. Tejera Nevado P, Tešan Tomić T, Atefyekta A, Fehr A, Stenman G, Andersson MK. Synthetic oleanane triterpenoids suppress MYB oncogene activity and sensitize T-cell acute lymphoblastic leukemia cells to chemotherapy. Front Oncol 2023;13:1126354.
231. Yusenko MV, Trentmann A, Andersson MK, et al. Monensin, a novel potent MYB inhibitor, suppresses proliferation of acute myeloid leukemia and adenoid cystic carcinoma cells. Cancer Lett 2020;479:61-70.
232. Lee YJ, Kang YR, Lee SY, Jin Y, Han DC, Kwon BM. Ginkgetin induces G2-phase arrest in HCT116 colon cancer cells through the modulation of b-Myb and miRNA34a expression. Int J Oncol 2017;51:1331-42.
233. Liu XM, Wang LG, Li HY, Ji XJ. Induction of differentiation and down-regulation of c-myb gene expression in ML-1 human myeloblastic leukemia cells by the clinically effective anti-leukemia agent meisoindigo. Biochem Pharmacol 1996;51:1545-51.
234. Chen F, Li L, Ma D, et al. Imatinib achieved complete cytogenetic response in a CML patient received 32-year indirubin and its derivative treatment. Leuk Res 2010;34:e75-7.
235. Han SS, Han S, Kamberos NL. Piperlongumine inhibits the proliferation and survival of B-cell acute lymphoblastic leukemia cell lines irrespective of glucocorticoid resistance. Biochem Biophys Res Commun 2014;452:669-75.
236. Yusenko M, Jakobs A, Klempnauer KH. A novel cell-based screening assay for small-molecule MYB inhibitors identifies podophyllotoxins teniposide and etoposide as inhibitors of MYB activity. Sci Rep 2018;8:13159.
237. Yusenko MV, Biyanee A, Frank D, et al. Bcr-TMP, a novel nanomolar-active compound that exhibits both MYB- and microtubule-inhibitory activity. Cancers 2021;14:43.
238. Köhler LHF, Reich S, Yusenko M, et al. A new naphthopyran derivative combines c-Myb inhibition, microtubule-targeting effects, and antiangiogenic properties. ACS Med Chem Lett 2022;13:1783-90.
239. Köhler LHF, Reich S, Yusenko M, et al. Multimodal 4-arylchromene derivatives with microtubule-destabilizing, anti-angiogenic, and MYB-inhibitory activities. Cancer Drug Resist 2023;6:59-77.
240. Uttarkar S, Dukare S, Bopp B, Goblirsch M, Jose J, Klempnauer KH. Naphthol AS-E phosphate inhibits the activity of the transcription factor Myb by blocking the interaction with the KIX domain of the coactivator p300. Mol Cancer Ther 2015;14:1276-85.
241. Ramaswamy K, Forbes L, Minuesa G, et al. Peptidomimetic blockade of MYB in acute myeloid leukemia. Nat Commun 2018;9:110.
242. Joy ST, Henley MJ, De Salle SN, et al. A dual-site inhibitor of CBP/p300 KIX is a selective and effective modulator of Myb. J Am Chem Soc 2021;143:15056-62.
243. Yusenko MV, Biyanee A, Andersson MK, et al. Proteasome inhibitors suppress MYB oncogenic activity in a p300-dependent manner. Cancer Lett 2021;520:132-42.
244. Walf-Vorderwülbecke V, Pearce K, Brooks T, et al. Targeting acute myeloid leukemia by drug-induced c-MYB degradation. Leukemia 2018;32:882-9.
245. Smith C, Touzart A, Simonin M, et al. Harnessing the MYB-dependent TAL1 5’super-enhancer for targeted therapy in T-ALL. Mol Cancer 2023;22:12.
246. Hu T, Chong Y, Cai B, Liu Y, Lu S, Cowell JK. DNA methyltransferase 1-mediated CpG methylation of the miR-150-5p promoter contributes to fibroblast growth factor receptor 1-driven leukemogenesis. J Biol Chem 2019;294:18122-30.
247. Daniel JP, Mesquita FP, Da Silva EL, et al. Anticancer potential of mebendazole against chronic myeloid leukemia: in silico and in vitro studies revealed new insights about the mechanism of action. Front Pharmacol 2022;13:952250.
248. Sakka L, Delétage N, Chalus M, et al. Assessment of citalopram and escitalopram on neuroblastoma cell lines: cell toxicity and gene modulation. Oncotarget 2017;8:42789-807.
249. Zhuo C, Xun Z, Hou W, et al. Surprising anticancer activities of psychiatric medications: old drugs offer new hope for patients with brain cancer. Front Pharmacol 2019;10:1262.
250. Sumitani K, Kamijo R, Nagumo M. Cytotoxic effect of sodium nitroprusside on cancer cells: involvement of apoptosis and suppression of c-myc and c-myb proto-oncogene expression. Anticancer Res 1997;17:865-71.