REFERENCES
1. Jaffe ES. Diagnosis and classification of lymphoma: Impact of technical advances. Semin Hematol 2019;56:30-6.
3. GLOBOCAN. Cancer Today. Estimated number of new cases in 2020, worldwide, both sexes, all ages. Available from: https://gco.iarc.fr/today/online-analysis-pie?v=2020&mode=population&mode_population=regions&population=900&populations=900&key=total&sex=0&cancer=34&type=0&statistic=5&prevalence=0&population_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&nb_items=7&group_cancer=1&include_nmsc=1&include_nmsc_other=1&half_pie=0&donut=0 [Last accessed on 11 Apr 2023].
4. Alaggio R, Amador C, Anagnostopoulos I, et al. The 5th edition of the world health organization classification of haematolymphoid tumours: lymphoid neoplasms. Leukemia 2022;36:1720-48.
5. Campo E, Jaffe ES, Cook JR, et al. The international consensus classification of mature lymphoid neoplasms: a report from the clinical advisory committee. Blood 2022;140:1229-53.
6. Thandra KC, Barsouk A, Saginala K, Padala SA, Barsouk A, Rawla P. Epidemiology of non-Hodgkin’s lymphoma. Med Sci 2021:9.
7. Falini B, Martelli MP. Comparison of the international consensus and 5th WHO edition classifications of adult myelodysplastic syndromes and acute myeloid leukemia. Am J Hematol 2023;98:481-92.
8. Zhuang Y, Che J, Wu M, et al. Altered pathways and targeted therapy in double hit lymphoma. J Hematol Oncol 2022;15:26.
9. Mehta A, Verma A, Gupta G, Tripathi R, Sharma A. Double hit and double expresser diffuse large B cell lymphoma subtypes: discrete subtypes and major predictors of overall survival. Indian J Hematol Blood Transfus 2020;36:627-34.
11. Chiappella A, Crombie J, Guidetti A, Vitolo U, Armand P, Corradini P. Are we ready to treat diffuse large B-cell and high-grade lymphoma according to major genetic subtypes? HemaSphere 2019;3:e284.
12. Azizian NG, Liu Y, Pham LV, Li Y. Rational targeted therapeutics for double-hit lymphoma. Int J Hematol Oncol 2019;8:IJH19.
13. Di M, Huntington SF, Olszewski AJ. Challenges and opportunities in the management of diffuse large B-cell lymphoma in older patients. 2021;26:120-32.
15. Frazer JK, Li KJ, Galardy PJ, et al. Excellent outcomes in children and adolescents with CNS+ Burkitt lymphoma or other mature B-NHL using only intrathecal and systemic chemoimmunotherapy: results from FAB/LMB96 and COG ANHL01P1. Br J Haematol 2019;185:374-7.
16. Saleh K, Michot JM, Camara-Clayette V, Vassetsky Y, Ribrag V. Burkitt and burkitt-like lymphomas: a systematic review. Curr Oncol Rep 2020;22:33.
17. Hann SR. MYC cofactors: molecular switches controlling diverse biological outcomes. Cold Spring Harb Perspect Med 2014;4:a014399.
19. Schaub FX, Dhankani V, Berger AC, et al. Pan-cancer alterations of the MYC oncogene and its proximal network across the cancer genome atlas. Cell Syst 2018;6:282-300 e2.
20. Gabay M, Li Y, Felsher DW. MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring Harb Perspect Med 2014:4.
22. Daniel PT, Schulze-Osthoff K, Belka C, Güner D. Guardians of cell death: the Bcl-2 family proteins. Essays Biochem 2003;39:73-88.
23. Klanova M, Klener P. BCL-2 proteins in pathogenesis and therapy of B-cell non-hodgkin lymphomas. Cancers 2020:12.
24. Adams CM, Clark-Garvey S, Porcu P, Eischen CM. Targeting the Bcl-2 family in B cell lymphoma. Front Oncol 2018;8:636.
25. Kapoor I, Bodo J, Hill BT, Hsi ED, Almasan A. Targeting BCL-2 in B-cell malignancies and overcoming therapeutic resistance. Cell Death Dis 2020;11:941.
26. Strasser A, Harris AW, Bath ML, Cory S. Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2. Nature 1990;348:331-3.
27. Fairlie WD, Lee EF. Co-operativity between MYC and BCL-2 pro-survival proteins in cancer. Int J Mol Sci 2021:22.
28. Basso K, Dalla-Favera R. BCL6: master regulator of the germinal center reaction and key oncogene in B cell lymphomagenesis. Adv Immunol 2010;105:193-210.
29. Basso K, Dalla-Favera R. Roles of BCL6 in normal and transformed germinal center B cells. Immunol Rev 2012;247:172-83.
30. Yang H, Green MR. Epigenetic programing of B-cell lymphoma by BCL6 and its genetic deregulation. Front. Cell Dev Biol 2019;7:272.
31. Swerdlow SH. Diagnosis of “double hit” diffuse large B-cell lymphoma and B-cell lymphoma, unclassifiable, with features intermediate between DLBCL and Burkitt lymphoma: when and how, FISH versus IHC. Hematol Am Soc Hematol Educ Program 2014;2014:90-9.
32. Riedell PA, Smith SM. Double hit and double expressors in lymphoma: definition and treatment. Cancer 2018;124:4622-32.
33. Cheah CY, Oki Y, Westin JR, Turturro F. A clinician’s guide to double hit lymphomas. Br J Haematol 2015;168:784-95.
34. Quesada AE, Medeiros LJ, Desai PA, et al. Increased MYC copy number is an independent prognostic factor in patients with diffuse large B-cell lymphoma. Mod Pathol 2017;30:1688-97.
35. Scott DW, King RL, Staiger AM, et al. High-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements with diffuse large B-cell lymphoma morphology. Blood 2018;131:2060-4.
36. Aurer I, Kersten MJ, Dreyling M, Federico M. PF322 approach to double hit lymphoma (DHL) diagnosis and treatment in europe - a cross-section study of EHA lymphoma working party (EHA LYG). HemaSphere 2019;3(S1):113-4.
37. Nowakowski GS, Czuczman MS. ABC, GCB, and double-hit diffuse large B-Cell lymphoma: does subtype make a difference in therapy selection? 2015:e449-e57.
38. Ennishi D, Jiang A, Boyle M, et al. Double-hit gene expression signature defines a distinct subgroup of germinal center B-cell-like diffuse large B-cell lymphoma. J Clin Oncol 2019;37:190-201.
39. Sha C, Barrans S, Cucco F, et al. Molecular high-grade B-cell lymphoma: defining a poor-risk group that requires different approaches to therapy. J Clin Oncol 2019;37:202-12.
40. Cucco F, Barrans S, Sha C, et al. Distinct genetic changes reveal evolutionary history and heterogeneous molecular grade of DLBCL with MYC/BCL2 double-hit. Leukemia 2020;34:1329-41.
41. Felsher DW, Bishop JM. Reversible tumorigenesis by MYC in hematopoietic lineages. Mol Cell 1999;4:199-207.
42. Jain M, Arvanitis C, Chu K, et al. Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science 2002;297:102-4.
43. Pelengaris S, Khan M, Evan GI. Suppression of Myc-induced apoptosis in beta cells exposes multiple oncogenic properties of Myc and triggers carcinogenic progression. Cell 2002;109:321-34.
44. Marinkovic D, Marinkovic T, Mahr B, Hess J, Wirth T. Reversible lymphomagenesis in conditionally c-MYC expressing mice. Int J Cancer 2004;110:336-42.
45. Soucek L, Whitfield J, Martins CP, et al. Modelling Myc inhibition as a cancer therapy. Nature 2008;455:679-83.
46. Soucek L, Whitfield JR, Sodir NM, et al. Inhibition of Myc family proteins eradicates KRas-driven lung cancer in mice. Genes Dev 2013;27:504-13.
47. Mita MM, Mita AC. Bromodomain inhibitors a decade later: a promise unfulfilled? Br J Cancer 2020;123:1713-4.
48. Chen H, Liu Z, Zheng L, Wang R, Shi L. BET inhibitors: an updated patent review (2018-2021). Expert Opin Ther Pat 2022;32:953-68.
49. Johnson-Farley N, Veliz J, Bhagavathi S, Bertino JR. ABT-199, a BH3 mimetic that specifically targets Bcl-2, enhances the antitumor activity of chemotherapy, bortezomib and JQ1 in “double hit” lymphoma cells. Leuk Lymphoma 2015;56:2146-52.
50. Cinar M, Rosenfelt F, Rokhsar S, et al. Concurrent inhibition of MYC and BCL2 is a potentially effective treatment strategy for double hit and triple hit B-cell lymphomas. Leuk Res 2015;39:730-8.
51. Esteve-Arenys A, Valero JG, Chamorro-Jorganes A, et al. The BET bromodomain inhibitor CPI203 overcomes resistance to ABT-199 (venetoclax) by downregulation of BFL-1/A1 in in vitro and in vivo models of MYC+/BCL2+ double hit lymphoma. Oncogene 2018;37:1830-44.
52. Shorstova T, Foulkes WD, Witcher M. Achieving clinical success with BET inhibitors as anti-cancer agents. Br J Cancer 2021;124:1478-90.
53. Li W, Gupta SK, Han W, et al. Targeting MYC activity in double-hit lymphoma with MYC and BCL2 and/or BCL6 rearrangements with epigenetic bromodomain inhibitors. J Hematol Oncol 2019;12:73.
54. Dickinson M, Briones J, Herrera AF, et al. Phase 1b study of the BET protein inhibitor RO6870810 with venetoclax and rituximab in patients with diffuse large B-cell lymphoma. Blood Adv 2021;5:4762-70.
55. Winkler R, Magdefrau AS, Piskor EM, et al. Targeting the MYC interaction network in B-cell lymphoma via histone deacetylase 6 inhibition. Oncogene 2022;41:4560-72.
56. Ho TCS, Chan AHY, Ganesan A. Thirty years of HDAC inhibitors: 2020 insight and hindsight. J Med Chem 2020;63:12460-84.
57. Guan XW, Wang HQ, Ban WW, et al. Novel HDAC inhibitor Chidamide synergizes with Rituximab to inhibit diffuse large B-cell lymphoma tumour growth by upregulating CD20. Cell Death Dis 2020;11:20.
58. Kang J, Zhang Y, Ding S, et al. Modified conditioning regimen with chidamide and high-dose rituximab for triple-hit lymphoma. J Cell Mol Med 2021;25:10770-3.
59. Luo C, Yu T, Young KH, Yu L. HDAC inhibitor chidamide synergizes with venetoclax to inhibit the growth of diffuse large B-cell lymphoma via down-regulation of MYC, BCL2, and TP53 expression. J Zhejiang Univ Sci B 2022;23:666-81.
61. Kim SJ, Kim UJ, Yoo HY, Choi YJ, Kang KW. Anti-cancer effects of CKD-581, a potent histone deacetylase inhibitor against diffuse large B-cell lymphoma. Int J Mol Sci 2020:21.
62. Li H, Cui R, Ji M, Jin SY. CUDC-101 enhances the chemosensitivity of gemcitabine-treated lymphoma cells. Leuk Res 2021;106:106575.
63. Zhang K, Huang L, Lai F, et al. Bioevaluation of a dual PI3K/HDAC inhibitor for the treatment of diffuse large B-cell lymphoma. Bioorg Med Chem Lett 2022;71:128825.
64. Zhang MC, Fang Y, Wang L, et al. Clinical efficacy and molecular biomarkers in a phase II study of tucidinostat plus R-CHOP in elderly patients with newly diagnosed diffuse large B-cell lymphoma. Clin Epigenetics 2020;12:160.
65. Landsburg DJ, Barta SK, Ramchandren R, et al. Fimepinostat (CUDC-907) in patients with relapsed/refractory diffuse large B cell and high-grade B-cell lymphoma: report of a phase 2 trial and exploratory biomarker analyses. Br J Haematol 2021;195:201-9.
66. Sonawane YA, Taylor MA, Napoleon JV, Rana S, Contreras JI, Natarajan A. Cyclin dependent kinase 9 inhibitors for cancer therapy. J Med Chem 2016;59:8667-84.
67. Diamond JR, Boni V, Lim E, et al. First-in-human dose-escalation study of cyclin-dependent kinase 9 inhibitor VIP152 in patients with advanced malignancies shows early signs of clinical efficacy. Clin Cancer Res 2022;28:1285-93.
68. Moreno V, Cordoba R, Morillo D, et al. Safety and efficacy of VIP152, a CDK9 inhibitor, in patients with double-hit lymphoma (DHL). J Clin Oncol 2021;39:7538.
69. Frigault MM, Wong H, Garban H, et al. VIP152, a selective CDK9 inhibitor, induces complete regression in a high-grade B-cell lymphoma (HGBL) model and depletion of short-lived oncogenic driver transcripts, MYC and MCL1, with a once weekly schedule. Blood 2021;138:1192.
70. Ball B, Borthakur G, Stein AS, Chan K, Thai DL, Stein E. Safety and efficacy of casein kinase 1α and cyclin dependent kinase 7/9 inhibition in patients with relapsed or refractory AML: a first-in-human study of BTX-A51. J Clin Oncol 2022;40:7030.
71. Ball BJ, Stein AS, Borthakur G, et al. Trial in progress: a phase I trial of BTX-A51 in patients with relapsed or refractory AML or high-risk MDS. Blood 2020;136:18-9.
72. Richters A, Doyle SK, Freeman DB, et al. Modulating androgen receptor-driven transcription in prostate cancer with selective CDK9 inhibitors. Cell Chem Biol 2021;28:134-47 e14.
73. Day MA, Saffran DC, Hood T, et al. CDK9 inhibition via KB-0742 is a potential strategy to treat transcriptionally addicted cancers. Cancer Res 2022;82:2564.
74. Mishra R, Patel H, Alanazi S, Kilroy MK, Garrett JT. PI3K inhibitors in cancer: clinical implications and adverse effects. Int J Mol Sci 2021:22.
75. Chen L, Ouyang J, Wienand K, et al. CXCR4 upregulation is an indicator of sensitivity to B-cell receptor/PI3K blockade and a potential resistance mechanism in B-cell receptor-dependent diffuse large B-cell lymphomas. Haematologica 2020;105:1361-8.
76. Grande BM, Gerhard DS, Jiang A, et al. Genome-wide discovery of somatic coding and noncoding mutations in pediatric endemic and sporadic Burkitt lymphoma. Blood 2019;133:1313-24.
77. Profitos-Peleja N, Santos JC, Marin-Niebla A, Roue G, Ribeiro ML. Regulation of B-cell receptor signaling and its therapeutic relevance in aggressive B-cell lymphomas. Cancers 2022:14.
78. Stengel S, Petrie KR, Sbirkov Y, et al. Suppression of MYC by PI3K/AKT/mTOR pathway inhibition in combination with all-trans retinoic acid treatment for therapeutic gain in acute myeloid leukaemia. Br J Haematol 2022;198:338-48.
79. Zhu J, Blenis J, Yuan J. Activation of PI3K/Akt and MAPK pathways regulates Myc-mediated transcription by phosphorylating and promoting the degradation of Mad1. Proc Natl Acad Sci USA 2008;105:6584-9.
80. Fan L, Wang C, Zhao L, et al. SHC014748M, a novel selective inhi-bitor of PI3Kδ, demonstrates promising preclinical antitumor activity in B cell lymphomas and chronic lymphocytic leukemia. Neoplasia 2020;22:714-24.
81. Zuo W-Q, Hu R, Wang W-L, et al. Identification of a potent and selective phosphatidylinositol 3-kinase δ inhibitor for the treatment of non-Hodgkin’s lymphoma. Bioorg Chem 2020;105:104344.
82. Chen ZQ, Cao ZR, Wang Y, et al. Repressing MYC by targeting BET synergizes with selective inhibition of PI3Kalpha against B cell lymphoma. Cancer Lett 2022;524:206-18.
83. Zhang X, Duan YT, Wang Y, et al. SAF-248, a novel PI3Kdelta-selective inhibitor, potently suppresses the growth of diffuse large B-cell lymphoma. Acta Pharmacol Sin 2022;43:209-19.
84. Nastoupil LJ, Neelapu SS, Davis RE, et al. Preclinical and phase I studies of KA2237, a selective and potent inhibitor of PI3K β/δ in relapsed refractory B cell lymphoma. Leuk Lymphoma 2021;62:3452-62.
85. Lee BR, Wang S, Son Mk, et al. Abstract 655: BR101801: a first-in-class triple-inhibitor of PI3K gamma/delta and DNA-PK targeting non-Hodgkin’s lymphoma. Cancer Res 2020;80:655.
86. Kim TM, Yoon DH, Mattour AH, et al. A phase 1 dose escalation study of dual PI3K and DNA PK inhibitor, BR101801 in adult patients with advanced hematologic malignancies. Blood 2021;138:3562.
87. Shin N, Stubbs M, Koblish H, et al. Parsaclisib Is a next-generation phosphoinositide 3-kinase δ inhibitor with reduced hepatotoxicity and potent antitumor and immunomodulatory activities in models of B-cell malignancy. J Pharmacol Exp Ther 2020;374:211-22.
88. Wang Y, Laplant B, King RL, et al. Parsaclisib in combination with R-CHOP for patients with newly diagnosed diffuse large B-cell lymphoma: preliminary results of a phase 1/1b study. Blood 2021;138:1415.
89. Moyo TK, Wilson CS, Moore DJ, Eischen CM. Myc enhances B-cell receptor signaling in precancerous B cells and confers resistance to Btk inhibition. Oncogene 2017;36:4653-61.
90. Ribeiro ML, Reyes-Garau D, Vinyoles M, et al. Antitumor activity of the novel BTK inhibitor TG-1701 is associated with disruption of ikaros signaling in patients with B-cell non-hodgkin lymphoma. Clin Cancer Res 2021;27:6591-601.
91. Burke GAA, Beishuizen A, Bhojwani D, et al. Ibrutinib plus CIT for R/R mature B-NHL in children (SPARKLE trial): initial safety, pharmacokinetics, and efficacy. Leukemia 2020;34:2271-5.
92. Burke GAA, Vinti L, Kabickova E, et al. Ibrutinib plus RICE/RVICI for R/R mature B-NHL in children/young adults: SPARKLE trial. Blood Adv 2022; doi: 10.1182/bloodadvances.2022008802.
93. Yang H, Xiang B, Song Y, et al. Zanubrutinib monotherapy for relapsed or refractory non-germinal center diffuse large B-cell lymphoma. Blood Adv 2022;6:1629-36.
94. Barr PM, Smith SD, Roschewski MJ, et al. Phase 1/2 study of acalabrutinib and the PI3K delta inhibitor ACP-319 in relapsed/refractory B-cell non-hodgkin lymphoma. Leuk Lymphoma 2022;63:1728-32.
95. Beaulieu ME, Castillo F, Soucek L. Structural and biophysical insights into the function of the intrinsically disordered Myc oncoprotein. Cells 2020:9.
96. Gomez-Curet I, Perkins RS, Bennett R, Feidler KL, Dunn SP, Krueger LJ. c-Myc inhibition negatively impacts lymphoma growth. J Pediatr Surg 2006;41:207-11; discussion .
97. Clausen DM, Guo J, Parise RA, et al. In vitro cytotoxicity and in vivo efficacy, pharmacokinetics, and metabolism of 10074-G5, a novel small-molecule inhibitor of c-Myc/max dimerization. J Pharmacol Exp Ther 2010;335:715-27.
98. Choi SH, Mahankali M, Lee SJ, et al. Targeted disruption of Myc-max oncoprotein complex by a small molecule. ACS Chem Biol 2017;12:2715-9.
99. Pighi C, Cheong TC, Compagno M, et al. Frequent mutations of FBXO11 highlight BCL6 as a therapeutic target in Burkitt lymphoma. Blood Adv 2021;5:5239-57.
100. Li X-Y, Wu J-C, Liu P, et al. Inhibition of USP1 reverses the chemotherapy resistance through destabilization of MAX in the relapsed/refractory B-cell lymphoma. Leukemia 2023;37:164-177.
101. Sun Y, Yang L, Hao X, et al. Phase I dose-escalation study of chiauranib, a novel angiogenic, mitotic, and chronic inflammation inhibitor, in patients with advanced solid tumors. J Hematol Oncol 2019;12:9.
102. Deng M, Shi Y, Chen K, et al. CS2164 exerts an antitumor effect against human non-Hodgkin’s lymphomas in vitro and in vivo. Exp Cell Res 2018;369:356-62.
103. Yuan D, Li G, Yu L, et al. CS2164 and venetoclax show synergistic antitumoral activities in high grade B-cell lymphomas with MYC and BCL2 rearrangements. Front Oncol 2021;11:618908.
104. Thompson PA, Eam B, Young NP, et al. Targeting oncogene mRNA translation in B-cell malignancies with eFT226, a potent and selective inhibitor of eIF4A. Mol Cancer Ther 2021;20:26-36.
105. Moreau P, Richardson PG, Cavo M, et al. Proteasome inhibitors in multiple myeloma: 10 years later. Blood 2012;120:947-59.
106. Ravi D, Beheshti A, Abermil N, et al. Proteasomal inhibition by ixazomib induces CHK1 and MYC-dependent cell death in T-cell and hodgkin lymphoma. Cancer Res 2016;76:3319-31.
107. Graf SA, Lynch RC, Gooley TA, et al. Ixazomib-rituximab in untreated indolent B-NHL: an effective, very low toxicity regimen. Blood 2020;136:4.
108. Galvez C, Karmali R, Hamadani M, et al. A phase I-II trial of DA-EPOCH-R plus ixazomib as frontline therapy for patients with MYC-Aberrant lymphoid malignancies: the daciphor regimen. Blood 2020;136:44-5.
109. Davies AJ, Stanton L, Caddy J, et al. Five-year survival results from the remodl-B trial (ISRCTN 51837425) show improved outcomes in diffuse large B-cell lymphoma molecular subgroups from the addition of bortezomib to R-CHOP chemoimmunotherapy. Blood 2022;140(Supplement 1):1770-2.
110. Davies A, Cummin TE, Barrans S, et al. Gene-expression profiling of bortezomib added to standard chemoimmunotherapy for diffuse large B-cell lymphoma (REMoDL-B): an open-label, randomised, phase 3 trial. Lancet Oncol 2019;20:649-62.
111. Strati P, Nastoupil LJ, Davis RE, et al. A phase 1 trial of alisertib and romidepsin for relapsed/refractory aggressive B-cell and T-cell lymphomas. Haematologica 2020;105:e26-e8.
112. Gavory G, Ghandi M, d’Alessandro A-C, et al. Abstract 3929: identification of MRT-2359 a potent, selective and orally bioavailable GSPT1-directed molecular glue degrader (MGD) for the treatment of cancers with Myc-induced translational addiction. Cancer Res 2022;82(12_Supplement):3929.
113. Sesques P, Johnson NA. Approach to the diagnosis and treatment of high-grade B-cell lymphomas with MYC and BCL2 and/or BCL6 rearrangements. Blood 2017;129:280-8.
114. Rosenwald A, Bens S, Advani R, et al. Prognostic significance of MYC rearrangement and translocation partner in diffuse large B-cell lymphoma: a study by the lunenburg lymphoma biomarker consortium. J Clin Oncol 2019;37:3359-68.
115. Ott G, Rosenwald A, Campo E. Understanding MYC-driven aggressive B-cell lymphomas: pathogenesis and classification. Blood 2013;122:3884-91.