REFERENCES

1. Urruticoechea A, Alemany R, Balart J, Villanueva A, Vinals F, et al. Recent advances in cancer therapy: an overview. Curr Pharm Des 2010;16:3-10.

2. Baskar R, Lee KA, Yeo R, Yeoh KW. Cancer and radiation therapy: current advances and future directions. Int J Med Sci 2012;9:193-9.

3. Khalil DN, Smith EL, Brentjens RJ, Wolchok JD. The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol 2016;13:273-90.

4. Wang X, Zhang H, Chen X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist 2019;2:141-60.

5. Kumar S, Kushwaha PP, Gupta S. Emerging targets in cancer drug resistance. Cancer Drug Resist 2019;2:161-77.

6. Johnson IS, Armstrong JG, Gorman M, Burnett Jr JP. The Vinca alkaloids: a new class of oncolytic agents. Cancer Res 1963;23:1390-427.

7. Biersack B, Schobert R. Indole compounds against breast cancer: recent developments. Curr Drug Targets 2012;13:1705-19.

8. Omura S, Iwai Y, Hirano A, Nakagawa A, Awaya J, et al. A new alkaloid AM-2282 of Streptomyces origin. Taxonomy, fermentation, isolation and preliminary characterization. J Antibiot 1977;30:275-82.

9. Oudard S, Beuselinck B, Decoene J, Albers P. Sunitinib for the treatment of metastatic renal cell carcinoma. Cancer Treat Rev 2011;37:178-84.

10. Bourhill T, Narendran A, Johnston RN. Enzastaurin: a lesson in drug development. Crit Rev Oncol Hematol 2017;112:72-9.

11. Sarkar FH, Li Y. Harnessing the fruits of nature for the development of multi-targeted cancer therapeutics. Cancer Treat Rev 2009;35:597-607.

12. Ahmad A, Biersack B, Li Y, Kong D, Bao B, et al. Target regulation of PI3K/Akt/mTOR/NF-kB signaling by indole compounds and their derivatives: mechanistic details and biological implications for cancer therapy. Anti-Cancer Agents Med Chem 2013;13:1002-13.

13. Ahmad A, Sakr WA, Rahman KM. Anticancer properties of indole compounds: mechanism of apoptosis induction and role in chemotherapy. Cancer Treat Rev 2009;35:597-607.

14. Terry P, Wolk A, Persson I, Magnusson C. Brassica vegetables and breast cancer risk. JAMA 2001;285:2975-7.

15. Keck AS, Finley JW. Cruciferous vegetables: cancer protective mechanisms of glucosinolate hydrolysis products and selenium. Integr Cancer Ther 2004;3:5-12.

16. Paltsev M, Kiselev V, Muyzhnek E, Drukh V, Kuznetsov I, et al. Comparative preclinical pharmacokinetics study of 3,3’-diindolylmethane formulations: is personalized treatment and targeted chemoprevention in the horizon? EPMA J 2013;4:25.

17. Kaishap PP, Dohutia C. Synthetic approaches for bis(indolyl)methanes. Int J Pharm Sci Res 2013;4:1312-22.

18. Shiri M, Zolfigol MA, Kruger HG, Tanbakouchian Z. Bis- and trisindolylmethanes (BIMs and TIMs). Chem Rev 2010;110:2250-93.

19. Safe S, Papineni S, Chintharlapalli S. Cancer chemotherapy with indole-3-carbinol, bis(3’-indolyl)methane and synthetic analogs. Cancer Lett 2008;269:326-38.

20. Li Y, Kong D, Ahmad A, Bao B, Sarkar FH. Antioxidant function of isoflavone and 3,3’-diindolylmethane: are they important for cancer prevention and therapy. Antioxid Redox Signal 2013;19:139-50.

21. Popolo A, Pinto A, Daglia M, Nabavi SF, Farooqi AA, et al. Two likely targets for the anti-cancer effect of indole derivatives from cruciferous vegetables: PI3K/Akt/mTOR signaling pathway and the aryl hydrocarbon receptor. Seminars Cancer Biol 2017;46:132-7.

22. Wang S, Cheng L, Liu Y, Wang J, Jiang W. Indole-3-carbinol (I3C) and its major derivatives: their pharmacokinetics and important roles in hepatic protection. Curr Drug Metabol 2016;17:401-9.

23. Reed GA, Sunega JM, Sullivan DK, Gray JC, Mayo MS, et al. Single-dose pharmacokinetics and tolerability of absorption-enhanced 3,3’-diindolylmethane in healthy subjects. Cancer Epidemiol Biomarkers Prev 2008;17:2619-24.

24. Amare DE. Anti-cancer and other biological effects of a dietary compound 3,3’-diindolylmethane supplementation: a systematic review of human clinical trials. Nutr Diet Suppl 2020;12:123-37.

25. Heath EI, Heilbrun LK, Li J, Vaishampayan U, Harper F, et al. A phase I dose-escalation study of oral BR-DIM (BioResponse 3,3’-Diindolylmethane) in castrate-resistant, non-metastatic prostate cancer. Am J Transl Res 2010;2:402-11.

26. Hwang C, Sethi S, Heilbrun LK, Gupta NS, Chitale DA, et al. Anti-androgenic activity of absorption-enhanced 3,3’-diindolylmethane in prostatectomy patients. Am J Transl Res 2016;8:166-76.

27. Gee JR, Saltzstein DR, Messing E, Kim KM, Kolesar J, et al. Phase Ib placebo-controlled, tissue biomarker trial of diindolylmethane (BR-DIMNG) in patients with prostate cancer who are undergoing prostatectomy. Eur J Cancer Prev 2016;25:312-20.

28. Thomson CA, Chow HHS, Wertheim BC, Roe DJ, Stopeck A, et al. A randomized, placebo-controlled trial of diindolylmethane for breast cancer biomarker modulation in patients taking tamoxifen. Breast Cancer Res Treat 2017;165:97-107.

29. Biersack B. Non-coding RNA/microRNA-modulatory dietary factors and natural products for improved cancer therapy and prevention: alkaloids, organosulfur compounds, aliphatic carboxylic acids and water-soluble vitamins. Non-Coding RNA Res 2016;1:51-63.

30. Kong D, Heath E, Chen W, Cher ML, Powell I, et al. Loss of let-7 upregulates EZH2 in prostate cancer consistent with the acquisition of cancer stem cell signatures that are attenuated by BR-DIM. PLoS One 2012;7:e33729.

31. Kashat M, Azzouz L, Sarkar SH, Kong D, Li Y, et al. Inactivation of AR and Notch-1 signaling by miR-34a attenuates prostate cancer aggressiveness. Am J Transl Res 2012;4:432-42.

32. Yu J, Feng Y, Wang Y, An R. Aryl hydrocarbon receptor enhances the expression of miR-150-5p to suppress in prostate cancer progression by regulating MAP3K12. Arch Biochem Biophys 2018;654:47-54.

33. Ahmad A, Ali S, Ahmed A, Ali AS, Raz A, et al. Diindolylmethane enhances the effectiveness of Herceptin against HER-2/neu-expressing breast cancer cells. PLoS One 2013;8:e54657.

34. Hanieh H. Aryl hydrocarbon receptor-microRNA-212/132 axis in human breast cancer suppresses metastasis by targeting SOX4. Mol Cancer 2015;14:172.

35. Li Y, Vandenbloom II TG, Kong D, Wang Z, Ali S, et al. Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res 2009;69:6704-12.

36. Li Y, Vandenbloom II TG, Wang Z, Kong D, Ali S, et al. MiR-146a suppresses invasion of pancreatic cancer cells. Cancer Res 2010;70:1486-95.

37. Li Y, Kong D, Ahmad A, Bao B, Sarkar FH. Targeting bone remodeling by isoflavone and 3,3’-diindolylmethane in the context of prostate cancer bone metastasis. PLoS One 2012;7:e33011.

38. Sarkar S, Dubayo H, Ali S, Goncalves P, Kollepara SL, et al. Down-regulation of miR-221 inhibits proliferation of pancreatic cancer cells through up-regulation of PTEN, p27(kip1), p57 (kip2), and PUMA. Am J Cancer Res 2013;3:465-77.

39. Jin Y. 3,3’-Diindolylmethane inhibits breast cancer cell growth via miR-21-mediated CDC25A degradation. Mol Cell Biochem 2011;358:345-54.

40. Junaid M, Dash R, Islam N, Chowdhury J, Alam MJ, et al. Molecular simulation studies of 3,3’-diindolylmethane as a potent microRNA-21 antagonist. J Pharm Bioallied Sci 2017;9:259-65.

41. Bhowmik A, Das N, Pal U, Mandal M, Bhattacharya S, et al. 2,2’-Diphenyl-3,3’-diindolylmethane: a potent compound induces apoptosis in breast cancer cells by inhibiting EGFR pathway. PLoS One 2013;8:e59798.

42. Abdelbaqi K, Lack N, Guns ET, Kotha L, Safe S, et al. Antiandrogenic and growth inhibitory effects of ring-substituted analogs of 3,3’-diindolylmethane (ring-DIMs) in hormone-responsive LNCaP human prostate cancer cells. Prostate 2011;71:1401-12.

43. Goldberg AA, Titorenko VI, Beach A, Abdelbaqi K, Safe S, et al. Ring-substituted analogs of 3,3’-diindolylmethane (DIM) induce apoptosis and necrosis in androgen-dependent and -independent prostate cancer cells. Invest New Drugs 2014;32:25-36.

44. Draz H, Goldberg AA, Titorenko VI, Guns EST, Safe S, et al. Diindolylmethane and its halogenated derivatives induce protective autophagy in human prostate cancer cells via induction of the oncogenic protein AEG-1 and activation of AMP-activated protein kinase. Cell Signal 2017;40:172-82.

45. Chintharlappali S, Papineni S, Safe S. 1,1-Bis(3’-indolyl)-1-(p-substituted phenyl)methanes inhibit colon cancer cell and tumor growth through PPARgamma-dependent and PPARgamma-independent pathways. Mol Cancer Ther 2006;5:1362-70.

46. Yoon K, Lee SO, Cho SD, Kim K, Kham S, et al. Activation of nuclear TR3 (NR4A1) by a diindolylmethane analog induces apoptosis and proapoptotic genes in pancreatic cancer cells and tumors. Carcinogenesis 2011;32:836-42.

47. Hedrick E, Cheng Y, Lacey A, Mohankumar K, Zarel M, et al. Potent inhibition of breast cancer by bis-indole-derived nuclear receptor 4A1 (NR4A1) antagonists. Breast Cancer Res Treat 2019;177:29-40.

48. Li X, Tjalkens RB, Shrestha R, Safe S. Structure-dependent activation of gene expression by bis-indole and quinolone-derived activators of nuclear receptor 4A2. Chem Biol Drug Des 2019;94:1711-20.

49. Boakye CHA, Patel K, Patel AR, Faria HAM, Zuculotto V, et al. Lipid-based oral delivery systems for skin deposition of a potential chemopreventive DIM derivative: characterization and evaluation. Drug Deliv Transl Res 2016;6:526-39.

50. Yoon K, Chen CC, Orr AA, Barreto PN, Tamamis P, et al. Activation of Coup-TFI by a novel diindolylmethane derivative. Cells 2019;220.

51. Klinge CM, Silver BF, Driscoll MD, Sathya G, Bambara RA, et al. Chicken ovalbumin upstream promoter-transcription factor interacts with estrogen receptor response elements and half-sites, and inhibits estrogen-induced gene expression. J Biol Chem 1997;272:31465-74.

52. Le Dily F, Metivier R, Gueguen MM, Le Peron C, Flouriot G, et al. COUP-TFI modulates estrogen signaling and influences proliferation, survival and migration of breast cancer cells. Breast Cancer Res Treat 2008;110:69-83.

53. Muenzner JK, Ahmad A, Rothemund M, Schrüfer S, Padhye S, et al. Ferrocene-substituted 3,3’-diindolylmethanes with improved anticancer activity. Appl Organometal Chem 2016;30:441-5.

54. Ahmad A, Dandawate P, Schruefer S, Padhye S, Sarkar FH, et al. Pentafluorophenyl substitution of natural di(indolyl-3-yl)methane strongly enhances growth inhibition and apoptosis induction in various cancer cell lines. Chem Biodiversity 2019;16:e1900028.

55. Dankhoff K, Ahmad A, Weber B, Biersack B, Schobert R. Anticancer properties of a new non-oxido vanadium(IV) complex with a catechol-modified 3,3’-diindolylmethane ligand. J Inorg Biochem 2019;194:1-6.

56. Chakraborty S, Ghosh S, Banerjee B, Santra A, Adhikary A, et al. Phemindole, a synthetic di-indole derivative maneuvers the store operated calcium entry (SOCE) to induce potent anti-carcinogenic activity in human triple negative breast cancer cells. Front Pharmacol 2016;7:114.

57. Patel AR, Godugu C, Wilson H, Safe S, Singh M. Evaluation of spray BIO-Max DIM-P in dogs for oral bioavailability and in Nu/nu mice bearing orthotopic/metastatic lung tumor models for anticancer activity. Pharm Res 2015;32:2292-300.

58. Godugu C, Doddapaneni R, Safe SH, Singh M. Novel diindolylmethane derivatives based NLC formulations to improve the oral bioavailability and anticancer effects in triple negative breast cancer. Eur J Pharm Biopharm 2016;108:168-79.

59. Patel AR, Doddapaneni R, Andey T, Wilson H, Safe S, et al. Evaluation of self-emulsified DIM-14 in dogs for oral bioavailability and in Nu/nu mice bearing stem cell lung tumor models for anticancer activity. J Controlled Release 2015;213:18-26.

60. Sharma DK, Rah B, Lambu MR, Hussain A, Yousuf SK, et al. Design and synthesis of novel N,N’-glycoside derivatives of 3,3’-diindolylmethanes as potential antiproliferative agents. Med Chem Commun 2012;3:1082-91.

61. Nayak D, Amin H, Rah B, Sharma D, Rasool RU, et al. Synthesis, pharmacodynamics and pharmacokinetic evaluation of a novel, therapeutically relevant N-glycosylated derivative of DIM (NGD16) as potential inhibitor of angiogenesis. J Cancer Sci Ther 2014;6:278-88.

62. Katoch A, Suklabaidya S, Chakraborty S, Nayak D, Rasool RU, et al. Dual role of Par-4 in abrogation of EMT and switching on mesenchymal to epithelial transition (MET) in metastatic pancreatic cancer cells. Mol Carcinogenesis 2018;57:1102-15.

63. Li WS, Wang CH, Ko S, Chang TT, Jen YC, et al. Synthesis and evaluation of the cytotoxicities of tetraindoles: observation that the 5-hydroxy tetraindole (SK228) induces G2 arrest and apoptosis in human breast cancer cells. J Med Chem 2012;55:1583-92.

64. Chao WR, Yean D, Amin K, Green C, Jong L. Computer-aided rational drug design: a novel agent (SR13668) designed to mimic the unique anticancer mechanisms of dietary indole-3-carbinol to block Akt signaling. J Med Chem 2007;50:3412-5.

65. Ahmed EM, Sarhan AE, El-Naggar DH, Khattab RR, El-Naggar M, et al. Towards breast cancer targeting: synthesis of tetrahydroindolocarbazoles, antibreast cancer evaluation, uPA inhibition, molecular genetic and molecular modelling studies. Bioorg Chem 2019;93:103332.

Cancer Drug Resistance
ISSN 2578-532X (Online)

Portico

All published articles will preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles will preserved here permanently:

https://www.portico.org/publishers/oae/