REFERENCES

1. Alavi M, Hamidi M. Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles. Drug Metab Pers Ther 2019;34:20180032.

2. Vladimis Y, Valerio V. Bringing again noble metal nanoparticles to the forefront of cancer therapy. Front Bioeng Biotechnol 2018;6:143.

3. Marchesan S, Kostarelos K, Bianco A, Prato M. The winding road for carbon nanotubes in nanomedicine. Mat Today 2015;18:12-9.

4. Tsai LW, Lin YC, Perevedentseva E, Lugovtsov A, Priezzhev A, et al. Nanodiamonds for medical applications: interaction with blood in vitro and in vivo. Int J Mol Sci 2016;17:1111.

5. Křivohlavá R, Neuhöferová E, Jakobsen KQ, Benson V. Knockdown of microRNA-135b in mammary carcinoma by targeted nanodiamonds: potentials and pitfalls of in vivo applications. Nanomaterials (Basel) 2019;9:866.

6. Suarez-Kelly LP, Campbell AR, Rampersaud IV, Bumb A, Wang MS, et al. Fluorescent nanodiamonds engage innate immune effector cells: a potential vehicle for targeted anti-tumor immunotherapy. Nanomedicine 2017;13:909-20.

7. Barnard AS. Diamond standard in diagnostics: nanodiamond biolabels make their mark. Analyst 2009;134:1751-64.

8. Faklaris O, Joshi V, Irinopoulou T, Tauc P, Sennour M, et al. Photoluminescent diamond nanoparticles for cell labeling: study of the uptake mechanism in mammalian cells. ACS Nano 2009;3:3955-62.

9. Hui YY, Cheng CL, Chang HC. Nanodiamonds for optical bioimaging. J Phys D Appl Phys 2010;43:374021.

10. Lukowski S, Neuhoferova E, Kinderman M, Krivohlava R, Mineva A, et al. Fluorescent nanodiamonds are efficient, easy-to-use cyto-compatible vehicles for monitored delivery of non-coding regulatory RNAs. J Biomed Nanotechnol 2018;14:946-58.

11. McGuinness LP, Yan Y, Stacey A, Simpson DA, Hall LT, et al. Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nat Nanotechnol 2011;6:358-63.

12. Mochalin VN, Shenderova O, Ho D, Gogotsi Y. The properties and applications of nanodiamonds. Nat Nanotechnol 2011;7:11-23.

13. Petrakova V, Benson V, Buncek M, Fiserova A, Ledvina M, et al. Imaging of transfection and intracellular release of intact, non-labeled DNA using fluorescent nanodiamonds. Nanoscale 2016;8:12002-12.

14. Kaur R, Badea I. Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging systems. Int J Nanomedicine 2013;8:203-20.

15. Turcheniuk K, Mochalin VN. Biomedical applications of nanodiamond (Review). Nanotechnology 2017;28:252001.

16. Chang YR, Lee HY, Chen K, Chang CC, Tsai DS, et al. Mass production and dynamic imaging of fluorescent nanodiamonds. Nat Nanotechnol 2008;3:284-8.

17. Longmire M, Choyke PL, Kobayashi H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond) 2008;3:703-17.

18. Fang J, Nakamura H, Maeda H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 2011;63:136-51.

19. Yu M, Zheng J. Clearance pathways and tumor targeting of imaging nanoparticles. ACS Nano 2015;9:6655-74.

20. Mohan N, Chen CS, Hsieh HH, Wu YC, Chang HC. In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett 2010;10:3692-9.

21. Vaijayanthimala V, Cheng PY, Yeh SH, Liu KK, Hsiao CH, et al. The long-term stability and biocompatibility of fluorescent nanodiamond as an in vivo contrast agent. Biomaterials 2012;33:7794-802.

22. Zheng T, Perona Martínez F, Storm IM, Rombouts W, Sprakel J, et al. Recombinant protein polymers for colloidal stabilization and improvement of cellular uptake of diamond nanosensors. Anal Chem 2017;89:12812-20.

23. Hemelaar SR, Nagl A, Bigot F, Rodríguez-García MM, de Vries MP, et al. The interaction of fluorescent nanodiamond probes with cellular media. Mikrochim Acta 2017;184:1001-9.

24. Daniels TR, Bernabeu E, Rodríguez JA, Patel S, Kozman M, et al. The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim Biophys Acta 2012;1820:291-317.

25. Chang LY, Osawa E, Barnard AS. Confirmation of the electrostatic self-assembly of nanodiamonds. Nanoscale 2011;3:958-62.

26. Chow EK. Implication of cancer stem cells in cancer drug development and drug delivery. J Lab Autom 2013;18:6-11.

27. Chu Z, Zhang S, Zhang B, Zhang C, Fang CY, et al. Unambiguous observation of shape effects on cellular fate of nanoparticles. Sci Rep 2014;4:4495.

28. Puzyr A, Baron A, Purtov K, Bortnikov E, Skobelev N, et al. Nanodiamonds with novel properties: a biological study. Diam Relat Mater 2007;16:5.

29. van der Laan K, Hasani M, Zheng T, Schirhagl R. Nanodiamonds for in vivo applications. Small 2018;14:e1703838.

30. Hsiao WW, Hui YY, Tsai PC, Chang HC. Fluorescent nanodiamond: a versatile tool for long-term cell tracking, super-resolution imaging, and nanoscale temperature sensing. Acc Chem Res 2016;49:400-7.

31. Gulka M, Salehi H, Varga B, Middendorp E, Pall O, et al. Simultaneous label-free live imaging of cell nucleus and luminescent nanodiamonds. Sci Rep 2020;10:9791.

32. Gismondi A, Reina G, Orlanducci S, Mizzoni F, Gay S, et al. Nanodiamonds coupled with plant bioactive metabolites: a nanotech approach for cancer therapy. Biomaterials 2015;38:22-35.

33. Martín R, Alvaro M, Herance JR, García H. Fenton-treated functionalized diamond nanoparticles as gene delivery system. ACS Nano 2010;4:65-74.

34. Chen M, Zhang XQ, Man HB, Lam R, Chow EK, et al. Nanodiamond vectors functionalized with polyethylenimine for siRNA delivery. J Phys Chem Lett 2010;1:3167-71.

35. Ho D, Wang CH, Chow EK. Nanodiamonds: the intersection of nanotechnology, drug development, and personalized medicine. Sci Adv 2015;1:e1500439.

36. Lee DK, Kee T, Liang Z, Hsiou D, Miya D, et al. Clinical validation of a nanodiamond-embedded thermoplastic biomaterial. Proc Natl Acad Sci U S A 2017;114:E9445-54.

37. Nakamura Y, Mochida A, Choyke PL, Kobayashi H. Nanodrug delivery: is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug Chem 2016;27:2225-38.

38. Ramzy L, Nasr M, Metwally AA, Awad GAS. Cancer nanotheranostics: a review of the role of conjugated ligands for overexpressed receptors. Eur J Pharm Sci 2017;104:273-92.

39. Cersosimo RJ, Hong WK. Epirubicin: a review of the pharmacology, clinical activity, and adverse effects of an adriamycin analogue. J Clin Oncol 1986;4:425-39.

40. Chow EK, Zhang XQ, Chen M, Lam R, Robinson E, et al. Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Sci Transl Med 2011;3:73ra21.

41. Lin YW, Raj EN, Liao WS, Lin J, Liu KK, et al. Co-delivery of paclitaxel and cetuximab by nanodiamond enhances mitotic catastrophe and tumor inhibition. Sci Rep 2017;7:9814.

42. Moore LK, Chow EK, Osawa E, Bishop JM, Ho D. Diamond-lipid hybrids enhance chemotherapeutic tolerance and mediate tumor regression. Adv Mater 2013;25:3532-41.

43. Wang X, Low XC, Hou W, Abdullah LN, Toh TB, et al. Epirubicin-adsorbed nanodiamonds kill chemoresistant hepatic cancer stem cells. ACS Nano 2014;8:12151-66.

44. Yuan SJ, Xu YH, Wang C, An HC, Xu HZ, et al. Doxorubicin-polyglycerol-nanodiamond conjugate is a cytostatic agent that evades chemoresistance and reverses cancer-induced immunosuppression in triple-negative breast cancer. J Nanobiotechnology 2019;17:110.

45. Huang H, Pierstorff E, Osawa E, Ho D. Active nanodiamond hydrogels for chemotherapeutic delivery. Nano Lett 2007;7:3305-14.

46. Lam R, Chen M, Pierstorff E, Huang H, Osawa E, et al. Nanodiamond-embedded microfilm devices for localized chemotherapeutic elution. ACS Nano 2008;2:2095-102.

47. Zhang XQ, Lam R, Xu X, Chow EK, Kim HJ, et al. Multimodal nanodiamond drug delivery carriers for selective targeting, imaging, and enhanced chemotherapeutic efficacy. Adv Mater 2011;23:4770-5.

48. Madamsetty VS, Sharma A, Toma M, Samaniego S, Gallud A, et al. Tumor selective uptake of drug-nanodiamond complexes improves therapeutic outcome in pancreatic cancer. Nanomedicine 2019;18:112-21.

49. Hoang Thi TT, Pilkington EH, Nguyen DH, Lee JS, Park KD, et al. The importance of Poly(ethylene glycol) alternatives for overcoming PEG immunogenicity in drug delivery and bioconjugation. Polymers (Basel) 2020;12:298.

50. Suliman S, Xing Z, Wu X, Xue Y, Pedersen TO, et al. Release and bioactivity of bone morphogenetic protein-2 are affected by scaffold binding techniques in vitro and in vivo. J Control Release 2015;197:148-57.

51. Manus LM, Mastarone DJ, Waters EA, Zhang XQ, Schultz-Sikma EA, et al. Gd(III)-nanodiamond conjugates for MRI contrast enhancement. Nano Lett 2010;10:484-9.

52. Wu TJ, Tzeng YK, Chang WW, Cheng CA, Kuo Y, et al. Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds. Nat Nanotechnol 2013;8:682-9.

53. Lyakhovich A, Lleonart ME. Bypassing mechanisms of mitochondria-mediated cancer stem cells resistance to chemo- and radiotherapy. Oxid Med Cell Longev 2016;2016:1716341.

54. Li L, Bhatia R. Stem cell quiescence. Clin Cancer Res 2011;17:4936-41.

55. Saha S, Adhikary A, Bhattacharyya P, Das T, Sa G. Death by design: where curcumin sensitizes drug-resistant tumours. Anticancer Res 2012;32:2567-84.

56. Sotiropoulou PA, Christodoulou MS, Silvani A, Herold-Mende C, Passarella D. Chemical approaches to targeting drug resistance in cancer stem cells. Drug Discov Today 2014;19:1547-62.

57. Vinogradov S, Wei X. Cancer stem cells and drug resistance: the potential of nanomedicine. Nanomedicine (Lond) 2012;7:597-615.

58. Hill C, Wang Y. The importance of epithelial-mesenchymal transition and autophagy in cancer drug resistance. Cancer Drug Resist 2020;3:38-47.

59. Wang Y, Hays E, Rama M, Bonavida B. Cell-mediated immune resistance in cancer. Cancer Drug Resist 2020;3:232-51.

60. Sun Z, Zhao Z, Li G, Dong S, Huang Z, et al. Relevance of two genes in the multidrug resistance of hepatocellular carcinoma: in vivo and clinical studies. Tumori 2010;96:90-6.

61. Qin W, Huang G, Chen Z, Zhang Y. Nanomaterials in targeting cancer stem cells for cancer therapy. Front Pharmacol 2017;8:1.

62. Stupp R, Hegi ME. Targeting brain-tumor stem cells. Nat Biotechnol 2007;25:193-4.

63. Hong IS, Jang GB, Lee HY, Nam JS. Targeting cancer stem cells by using the nanoparticles. Int J Nanomedicine 2015;10:251-60.

64. Ali MS, Metwally AA, Fahmy RH, Osman R. Nanodiamonds: minuscule gems that ferry antineoplastic drugs to resistant tumors. Int J Pharm 2019;558:165-76.

65. Chan MS, Liu LS, Leung HM, Lo PK. Cancer-cell-specific mitochondria-targeted drug delivery by dual-ligand-functionalized nanodiamonds circumvent drug resistance. ACS Appl Mater Interfaces 2017;9:11780-9.

66. Batist G, Ramakrishnan G, Rao CS, Chandrasekharan A, Gutheil J, et al. Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer. J Clin Oncol 2001;19:1444-54.

67. Toh TB, Lee DK, Hou W, Abdullah LN, Nguyen J, et al. Nanodiamond-mitoxantrone complexes enhance drug retention in chemoresistant breast cancer cells. Mol Pharm 2014;11:2683-91.

68. Setyawati MI, Mochalin VN, Leong DT. Tuning endothelial permeability with functionalized nanodiamonds. ACS Nano 2016;10:1170-81.

69. Hoo CM, Starostin N, West P, Mecartney ML. A comparison of atomic force microscopy (AFM) and dynamic light scattering (DLS) methods to characterize nanoparticle size distributions. J Nanopart Res 2008;10:89-96.

70. Fiorillo M, Verre AF, Iliut M, Peiris-Pagés M, Ozsvari B, et al. Graphene oxide selectively targets cancer stem cells, across multiple tumor types: implications for non-toxic cancer treatment, via “differentiation-based nano-therapy”. Oncotarget 2015;6:3553-62.

71. Alshehri R, Ilyas AM, Hasan A, Arnaout A, Ahmed F, et al. Carbon nanotubes in biomedical applications: factors, mechanisms, and remedies of toxicity. J Med Chem 2016;59:8149-67.

72. Burke AR, Singh RN, Carroll DL, Torti FM, Torti SV. Targeting cancer stem cells with nanoparticle-enabled therapies. J Mol Biomark Diagn 2012. doi: 10.4172/2155-9929.S8-003

73. Yao HJ, Zhang YG, Sun L, Liu Y. The effect of hyaluronic acid functionalized carbon nanotubes loaded with salinomycin on gastric cancer stem cells. Biomaterials 2014;35:9208-23.

74. Man HB, Kim H, Kim HJ, Robinson E, Liu WK, et al. Synthesis of nanodiamond-daunorubicin conjugates to overcome multidrug chemoresistance in leukemia. Nanomedicine 2014;10:359-69.

75. Zhang Z, Niu B, Chen J, He X, Bao X, et al. The use of lipid-coated nanodiamond to improve bioavailability and efficacy of sorafenib in resisting metastasis of gastric cancer. Biomaterials 2014;35:4565-72.

76. Du X, Li L, Wei S, Wang S, Li Y. A tumor-targeted, intracellular activatable and theranostic nanodiamond drug platform for strongly enhanced in vivo antitumor therapy. J Mater Chem B 2020;8:1660.

Cancer Drug Resistance
ISSN 2578-532X (Online)

Portico

All published articles will preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles will preserved here permanently:

https://www.portico.org/publishers/oae/