REFERENCES

1. Office for National Statistics. Cancer registration statistics, England: 2017. Available from: https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/cancerregistrationstatisticsengland/2017. [Last accessed on 9 Sep 2020].

2. Public Health Wales. Cancer registration statistics, Wales: 2017. Available from: http://www.wcisu.wales.nhs.uk/cancer-incidence-in-wales. [Last accessed on 9 Sep 2020].

3. Public Health Scotland. Cancer registration statistics, Scotland: 2017. Available from: https://www.isdscotland.org/Health-Topics/Cancer/Cancer-Statistics/. [Last accessed on 9 Sep 2020].

4. Northern Ireland Cancer Registry. Cancer registration statistics, Northern Ireland: 2017. Available from: https://www.publichealth.hscni.net/directorate-public-health/service-development-and-screening/northern-ireland-cancer-registry. [Last accessed on 9 Sep 2020].

5. Kobayashi K, Hisamatsu K, Suzui N, Hara A, Tomita H, et al. A review of HPV-related head and neck cancer. J Clin Med 2018;7.

6. National Cancer Registration & Analysis Service and Cancer Research UK. Chemotherapy, Radiotherapy and Surgical Tumour Resections in England. Availabe from: http://www.ncin.org.uk/cancer_type_and_topic_specific_work/topic_specific_work/main_cancer_treatments. [Last accessed on 9 Sep 2020].

7. Kim JK, Leeman JE, Riaz N, McBride S, Tsai CJ, et al. Proton therapy for head and neck cancer. Curr Treat Options Oncol 2018;19:28.

8. Stanisce L, Koshkareva Y, Xu Q, Patel A, Squillante C, et al. Stereotactic body radiotherapy treatment for recurrent, previously irradiated head and neck cancer. Technol Cancer Res Treat 2018;17:1533033818780086.

9. Castelli J, Simon A, Lafond C, Perichon N, Rigaud B, et al. Adaptive radiotherapy for head and neck cancer. Acta Oncol 2018;57:1284-92.

10. Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature 2009;461:1071-8.

11. Ranjha L, Howard SM, Cejka P. Main steps in DNA double-strand break repair: an introduction to homologous recombination and related processes. Chromosoma 2018;127:187-214.

12. Pannunzio NR, Watanabe G, Lieber MR. Nonhomologous DNA end-joining for repair of DNA double-strand breaks. J Biol Chem 2018;293:10512-23.

13. Mao Z, Bozzella M, Seluanov A, Gorbunova V. DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. Cell Cycle 2008;7:2902-6.

14. Goodhead DT. Energy deposition stochastics and track structure: what about the target? Radiat Prot Dosimetry 2006;122:3-15.

15. Hill MA. Radiation track structure: how the spatial distribution of energy deposition drives biological response. Clin Oncol (R Coll Radiol) 2020;32:75-83.

16. Loeffler JS, Durante M. Charged particle therapy--optimization, challenges and future directions. Nat Rev Clin Oncol 2013;10:411-24.

17. Vitti ET, Kacperek A, Parsons JL. Targeting DNA double-strand break repair enhances radiosensitivity of HPV-positive and HPV-negative head and neck squamous cell carcinoma to photons and protons. Cancers (Basel) 2020;12.

18. Carter RJ, Nickson CM, Thompson JM, Kacperek A, Hill MA, et al. Complex DNA damage induced by high linear energy transfer alpha-particles and protons triggers a specific cellular DNA damage response. Int J Radiat Oncol Biol Phys 2018;100:776-84.

19. Carter RJ, Parsons JL. Base excision repair, a pathway regulated by posttranslational modifications. Mol Cell Biol 2016;36:1426-37.

20. Edmonds MJ, Parsons JL. Regulation of base excision repair proteins by ubiquitylation. Exp Cell Res 2014;329:132-8.

21. Carter RJ, Nickson CM, Thompson JM, Kacperek A, Hill MA, et al. Characterisation of deubiquitylating enzymes in the cellular response to high-LET ionizing radiation and complex DNA damage. Int J Radiat Oncol Biol Phys 2019;104:656-65.

22. Berman TA, Schiller JT. Human papillomavirus in cervical cancer and oropharyngeal cancer: one cause, two diseases. Cancer 2017;123:2219-29.

23. Ang KK, Harris J, Wheeler R, Weber R, Rosenthal DI, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med 2010;363:24-35.

24. Rieckmann T, Tribius S, Grob TJ, Meyer F, Busch CJ, et al. HNSCC cell lines positive for HPV and p16 possess higher cellular radiosensitivity due to an impaired DSB repair capacity. Radiother Oncol 2013;107:242-6.

25. Nickson CM, Moori P, Carter RJ, Rubbi CP, Parsons JL. Misregulation of DNA damage repair pathways in HPV-positive head and neck squamous cell carcinoma contributes to cellular radiosensitivity. Oncotarget 2017;8:29963-75.

26. Weaver AN, Cooper TS, Rodriguez M, Trummell HQ, Bonner JA, et al. DNA double strand break repair defect and sensitivity to poly ADP-ribose polymerase (PARP) inhibition in human papillomavirus 16-positive head and neck squamous cell carcinoma. Oncotarget 2015;6:26995-7007.

27. Dok R, Bamps M, Glorieux M, Zhao P, Sablina A, et al. Radiosensitization approaches for HPV-positive and HPV-negative head and neck squamous carcinomas. Int J Cancer 2020;146:1075-85.

28. Ruttkay-Nedecky B, Jimenez Jimenez AM, Nejdl L, Chudobova D, Gumulec J, et al. Relevance of infection with human papillomavirus: the role of the p53 tumor suppressor protein and E6/E7 zinc finger proteins (Review). Int J Oncol 2013;43:1754-62.

29. Prigge ES, Arbyn M, von Knebel Doeberitz M, Reuschenbach M. Diagnostic accuracy of p16(INK4a) immunohistochemistry in oropharyngeal squamous cell carcinomas: a systematic review and meta-analysis. Int J Cancer 2017;140:1186-98.

30. Dok R, Kalev P, Van Limbergen EJ, Asbagh LA, Vazquez I, et al. p16INK4a impairs homologous recombination-mediated DNA repair in human papillomavirus-positive head and neck tumors. Cancer Res 2014;74:1739-51.

31. Wang L, Zhang P, Molkentine DP, Chen C, Molkentine JM, et al. TRIP12 as a mediator of human papillomavirus/p16-related radiation enhancement effects. Oncogene 2017;36:820-8.

32. Gray LH, Conger AD, Ebert M, Hornsey S, Scott OC. The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol 1953;26:638-48.

33. Thomlinson RH, Gray LH. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer 1955;9:539-49.

34. Evans SM, Du KL, Chalian AA, Mick R, Zhang PJ, et al. Patterns and levels of hypoxia in head and neck squamous cell carcinomas and their relationship to patient outcome. Int J Radiat Oncol Biol Phys 2007;69:1024-31.

35. Becker A, Hansgen G, Bloching M, Weigel C, Lautenschlager C, et al. Oxygenation of squamous cell carcinoma of the head and neck: comparison of primary tumors, neck node metastases, and normal tissue. Int J Radiat Oncol Biol Phys 1998;42:35-41.

36. Ivan M, Kondo K, Yang H, Kim W, Valiando J, et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 2001;292:464-8.

37. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 2001;292:468-72.

38. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 1999;399:271-5.

39. Ke Q, Costa M. Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol 2006;70:1469-80.

40. Dengler VL, Galbraith M, Espinosa JM. Transcriptional regulation by hypoxia inducible factors. Crit Rev Biochem Mol Biol 2014;49:1-15.

41. Knuth J, Sharma SJ, Wurdemann N, Holler C, Garvalov BK, et al. Hypoxia-inducible factor-1alpha activation in HPV-positive head and neck squamous cell carcinoma cell lines. Oncotarget 2017;8:89681-91.

42. Bencokova Z, Kaufmann MR, Pires IM, Lecane PS, Giaccia AJ, et al. ATM activation and signaling under hypoxic conditions. Mol Cell Biol 2009;29:526-37.

43. Melvin A, Rocha S. Chromatin as an oxygen sensor and active player in the hypoxia response. Cell Signal 2012;24:35-43.

44. Luoto KR, Kumareswaran R, Bristow RG. Tumor hypoxia as a driving force in genetic instability. Genome Integr 2013;4:5.

45. Hammond EM, Dorie MJ, Giaccia AJ. ATR/ATM targets are phosphorylated by ATR in response to hypoxia and ATM in response to reoxygenation. J Biol Chem 2003;278:12207-13.

46. Bristow RG, Hill RP. Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nat Rev Cancer 2008;8:180-92.

47. Hammond EM, Denko NC, Dorie MJ, Abraham RT, Giaccia AJ. Hypoxia links ATR and p53 through replication arrest. Mol Cell Biol 2002;22:1834-43.

48. Sorensen BS, Busk M, Olthof N, Speel EJ, Horsman MR, et al. Radiosensitivity and effect of hypoxia in HPV positive head and neck cancer cells. Radiother Oncol 2013;108:500-5.

49. Hauth F, Toulany M, Zips D, Menegakis A. Cell-line dependent effects of hypoxia prior to irradiation in squamous cell carcinoma lines. Clin Transl Radiat Oncol 2017;5:12-9.

50. Gottgens EL, Bussink J, Ansems M, Hammond EM, Span PN. AKT inhibition as a strategy for targeting hypoxic HPV-positive HNSCC. Radiother Oncol 2020;149:1-7.

51. Nowsheen S, Bonner JA, Yang ES. The poly(ADP-Ribose) polymerase inhibitor ABT-888 reduces radiation-induced nuclear EGFR and augments head and neck tumor response to radiotherapy. Radiother Oncol 2011;99:331-8.

52. Wurster S, Hennes F, Parplys AC, Seelbach JI, Mansour WY, et al. PARP1 inhibition radiosensitizes HNSCC cells deficient in homologous recombination by disabling the DNA replication fork elongation response. Oncotarget 2016;7:9732-41.

53. Hernandez AL, Young CD, Bian L, Weigel K, Nolan K, et al. PARP inhibition enhances radiotherapy of SMAD4-deficient human head and neck squamous cell carcinomas in experimental models. Clin Cancer Res 2020;26:3058-70.

54. Guster JD, Weissleder SV, Busch CJ, Kriegs M, Petersen C, et al. The inhibition of PARP but not EGFR results in the radiosensitization of HPV/p16-positive HNSCC cell lines. Radiother Oncol 2014;113:345-51.

55. Wang L, Cao J, Wang X, Lin E, Wang Z, et al. Proton and photon radiosensitization effects of niraparib, a PARP-1/-2 inhibitor, on human head and neck cancer cells. Head Neck 2020;42:2244-56.

56. Molkentine JM, Molkentine DP, Bridges KA, Xie T, Yang L, et al. Targeting DNA damage response in head and neck cancers through abrogation of cell cycle checkpoints. Int J Radiat Biol 2020:1-8.

57. Pires IM, Olcina MM, Anbalagan S, Pollard JR, Reaper PM, et al. Targeting radiation-resistant hypoxic tumour cells through ATR inhibition. Br J Cancer 2012;107:291-9.

58. Dillon MT, Barker HE, Pedersen M, Hafsi H, Bhide SA, et al. Radiosensitization by the ATR inhibitor AZD6738 through generation of acentric micronuclei. Mol Cancer Ther 2017;16:25-34.

59. Hafsi H, Dillon MT, Barker HE, Kyula JN, Schick U, et al. Combined ATR and DNA-PK inhibition radiosensitizes tumor cells independently of their p53 status. Front Oncol 2018;8:245.

60. Dohmen AJC, Qiao X, Duursma A, Wijdeven RH, Lieftink C, et al. Identification of a novel ATM inhibitor with cancer cell specific radiosensitization activity. Oncotarget 2017;8:73925-37.

61. Lee TW, Wong WW, Dickson BD, Lipert B, Cheng GJ, et al. Radiosensitization of head and neck squamous cell carcinoma lines by DNA-PK inhibitors is more effective than PARP-1 inhibition and is enhanced by SLFN11 and hypoxia. Int J Radiat Biol 2019:1-16.

62. Borst GR, McLaughlin M, Kyula JN, Neijenhuis S, Khan A, et al. Targeted radiosensitization by the Chk1 inhibitor SAR-020106. Int J Radiat Oncol Biol Phys 2013;85:1110-8.

63. Barker HE, Patel R, McLaughlin M, Schick U, Zaidi S, et al. CHK1 inhibition radiosensitizes head and neck cancers to paclitaxel-based chemoradiotherapy. Mol Cancer Ther 2016;15:2042-54.

64. Sankunny M, Parikh RA, Lewis DW, Gooding WE, Saunders WS, et al. Targeted inhibition of ATR or CHEK1 reverses radioresistance in oral squamous cell carcinoma cells with distal chromosome arm 11q loss. Genes Chromosomes Cancer 2014;53:129-43.

65. Busch CJ, Kriegs M, Laban S, Tribius S, Knecht R, et al. HPV-positive HNSCC cell lines but not primary human fibroblasts are radiosensitized by the inhibition of Chk1. Radiother Oncol 2013;108:495-9.

66. Busch CJ, Kroger MS, Jensen J, Kriegs M, Gatzemeier F, et al. G2-checkpoint targeting and radiosensitization of HPV/p16-positive HNSCC cells through the inhibition of Chk1 and Wee1. Radiother Oncol 2017;122:260-6.

67. Gottgens EL, Bussink J, Leszczynska KB, Peters H, Span PN, et al. Inhibition of CDK4/CDK6 enhances radiosensitivity of HPV negative head and neck squamous cell carcinomas. Int J Radiat Oncol Biol Phys 2019;105:548-58.

68. Dassonville O, Formento JL, Francoual M, Ramaioli A, Santini J, et al. Expression of epidermal growth factor receptor and survival in upper aerodigestive tract cancer. J Clin Oncol 1993;11:1873-8.

69. Magne N, Pivot X, Bensadoun RJ, Guardiola E, Poissonnet G, et al. The relationship of epidermal growth factor receptor levels to the prognosis of unresectable pharyngeal cancer patients treated by chemo-radiotherapy. Eur J Cancer 2001;37:2169-77.

70. Pivot X, Magne N, Guardiola E, Poissonnet G, Dassonville O, et al. Prognostic impact of the epidermal growth factor receptor levels for patients with larynx and hypopharynx cancer. Oral Oncol 2005;41:320-7.

71. Kalyankrishna S, Grandis JR. Epidermal growth factor receptor biology in head and neck cancer. J Clin Oncol 2006;24:2666-72.

72. Harari PM, Wheeler DL, Grandis JR. Molecular target approaches in head and neck cancer: epidermal growth factor receptor and beyond. Semin Radiat Oncol 2009;19:63-8.

73. Byeon HK, Ku M, Yang J. Beyond EGFR inhibition: multilateral combat strategies to stop the progression of head and neck cancer. Exp Mol Med 2019;51:1-14.

74. Bonner JA, Harari PM, Giralt J, Azarnia N, Shin DM, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 2006;354:567-78.

75. Tang C, Chan C, Jiang W, Murphy JD, von Eyben R, et al. Concurrent cetuximab versus platinum-based chemoradiation for the definitive treatment of locoregionally advanced head and neck cancer. Head Neck 2015;37:386-92.

76. Stegeman H, Span PN, Cockx SC, Peters JP, Rijken PF, et al. EGFR-inhibition enhances apoptosis in irradiated human head and neck xenograft tumors independent of effects on DNA repair. Radiat Res 2013;180:414-21.

77. Gillison ML, Trotti AM, Harris J, Eisbruch A, Harari PM, et al. Radiotherapy plus cetuximab or cisplatin in human papillomavirus-positive oropharyngeal cancer (NRG Oncology RTOG 1016): a randomised, multicentre, non-inferiority trial. Lancet 2019;393:40-50.

78. Mehanna H, Robinson M, Hartley A, Kong A, Foran B, et al. Radiotherapy plus cisplatin or cetuximab in low-risk human papillomavirus-positive oropharyngeal cancer (De-ESCALaTE HPV): an open-label randomised controlled phase 3 trial. Lancet 2019;393:51-60.

79. Rieckmann T, Kriegs M. The failure of cetuximab-based de-intensified regimes for HPV-positive OPSCC: a radiobiologists perspective. Clin Transl Radiat Oncol 2019;17:47-50.

80. Martinez-Useros J, Garcia-Foncillas J. The challenge of blocking a wider family members of EGFR against head and neck squamous cell carcinomas. Oral Oncol 2015;51:423-30.

81. Gurtner K, Deuse Y, Butof R, Schaal K, Eicheler W, et al. Diverse effects of combined radiotherapy and EGFR inhibition with antibodies or TK inhibitors on local tumour control and correlation with EGFR gene expression. Radiother Oncol 2011;99:323-30.

82. Kriegs M, Kasten-Pisula U, Riepen B, Hoffer K, Struve N, et al. Radiosensitization of HNSCC cells by EGFR inhibition depends on the induction of cell cycle arrests. Oncotarget 2016;7:45122-33.

83. Burtness B, Haddad R, Dinis J, Trigo J, Yokota T, et al. Afatinib vs Placebo as adjuvant therapy after chemoradiotherapy in squamous cell carcinoma of the head and neck: a randomized clinical trial. JAMA Oncol 2019;5:1170-80.

84. Guo Y, Ahn MJ, Chan A, Wang CH, Kang JH, et al. Afatinib versus methotrexate as second-line treatment in Asian patients with recurrent or metastatic squamous cell carcinoma of the head and neck progressing on or after platinum-based therapy (LUX-Head & Neck 3): an open-label, randomised phase III trial. Ann Oncol 2019;30:1831-9.

85. Khaznadar SS, Khan M, Schmid E, Gebhart S, Becker ET, et al. EGFR overexpression is not common in patients with head and neck cancer. Cell lines are not representative for the clinical situation in this indication. Oncotarget 2018;9:28965-75.

86. Kriegs M, Clauditz TS, Hoffer K, Bartels J, Buhs S, et al. Analyzing expression and phosphorylation of the EGF receptor in HNSCC. Sci Rep 2019;9:13564.

87. Curtis KK, Wong WW, Ross HJ. Past approaches and future directions for targeting tumor hypoxia in squamous cell carcinomas of the head and neck. Crit Rev Oncol Hematol 2016;103:86-98.

88. Lee DJ, Cosmatos D, Marcial VA, Fu KK, Rotman M, et al. Results of an RTOG phase III trial (RTOG 85-27) comparing radiotherapy plus etanidazole with radiotherapy alone for locally advanced head and neck carcinomas. Int J Radiat Oncol Biol Phys 1995;32:567-76.

89. Overgaard J, Hansen HS, Overgaard M, Bastholt L, Berthelsen A, et al. A randomized double-blind phase III study of nimorazole as a hypoxic radiosensitizer of primary radiotherapy in supraglottic larynx and pharynx carcinoma. Results of the Danish Head and Neck Cancer Study (DAHANCA) Protocol 5-85. Radiother Oncol 1998;46:135-46.

90. Toustrup K, Sorensen BS, Lassen P, Wiuf C, Alsner J, et al. Gene expression classifier predicts for hypoxic modification of radiotherapy with nimorazole in squamous cell carcinomas of the head and neck. Radiother Oncol 2012;102:122-9.

91. Lassen P, Eriksen JG, Hamilton-Dutoit S, Tramm T, Alsner J, et al. HPV-associated p16-expression and response to hypoxic modification of radiotherapy in head and neck cancer. Radiother Oncol 2010;94:30-5.

92. NIMRAD (A Randomised Placebo-controlled Trial of Synchronous NIMorazole Versus RADiotherapy Alone in Patients With Locally Advanced Head and Neck Squamous Cell Carcinoma Not Suitable for Synchronous Chemotherapy or Cetuximab) NIMRAD. The Christie NHS Foundation Trust; 2014. Available from: https://clinicaltrials.gov/ct2/show/NCT01950689. [Last accessed on 9 Sep 2020].

93. Bonnet M, Hong CR, Wong WW, Liew LP, Shome A, et al. Next-generation hypoxic cell radiosensitizers: nitroimidazole alkylsulfonamides. J Med Chem 2018;61:1241-54.

94. McKeage MJ, Baguley BC. Disrupting established tumor blood vessels: an emerging therapeutic strategy for cancer. Cancer 2010;116:1859-71.

95. Seshadri M, Mazurchuk R, Spernyak JA, Bhattacharya A, Rustum YM, et al. Activity of the vascular-disrupting agent 5,6-dimethylxanthenone-4-acetic acid against human head and neck carcinoma xenografts. Neoplasia 2006;8:534-42.

96. Wilson WR, Li AE, Cowan DS, Siim BG. Enhancement of tumor radiation response by the antivascular agent 5,6-dimethylxanthenone-4-acetic acid. Int J Radiat Oncol Biol Phys 1998;42:905-8.

97. Parsons JL, Dianov GL. Co-ordination of base excision repair and genome stability. DNA Repair (Amst) 2013;12:326-33.

98. Dianov GL, Parsons JL. Co-ordination of DNA single strand break repair. DNA Repair (Amst) 2007;6:454-60.

99. Ray Chaudhuri A, Nussenzweig A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol Cell Biol 2017;18:610-21.

100. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 2005;434:917-21.

101. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 2005;434:913-7.

102. Kong A, Good J, Kirkham A, Savage J, Mant R, et al. Phase I trial of WEE1 inhibition with chemotherapy and radiotherapy as adjuvant treatment, and a window of opportunity trial with cisplatin in patients with head and neck cancer: the WISTERIA trial protocol. BMJ Open 2020;10:e033009.

103. Seront E, Schmitz S, Papier M, van Maanen A, Henry S, et al. Phase 1 study evaluating the association of the cyclin-dependent kinase 4/6 inhibitor Ribociclib and Cetuximab in recurrent/metastatic p16-negative squamous cell carcinoma of the head and neck. Front Oncol 2019;9:155.

104. Lin CJ, Grandis JR, Carey TE, Gollin SM, Whiteside TL, et al. Head and neck squamous cell carcinoma cell lines: established models and rationale for selection. Head Neck 2007;29:163-88.

105. Tanaka N, Osman AA, Takahashi Y, Lindemann A, Patel AA, et al. Head and neck cancer organoids established by modification of the CTOS method can be used to predict in vivo drug sensitivity. Oral Oncol 2018;87:49-57.

106. Driehuis E, Kolders S, Spelier S, Lohmussaar K, Willems SM, et al. Oral mucosal organoids as a potential platform for personalized cancer therapy. Cancer Discov 2019;9:852-71.

Cancer Drug Resistance
ISSN 2578-532X (Online)

Portico

All published articles will preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles will preserved here permanently:

https://www.portico.org/publishers/oae/