REFERENCES
1. Stewart BW, Wild CP. World Cancer Report 2014. World Health Organization; 2014. Available from: https://publications.iarc.fr/Non-Series-Publications/World-Cancer-Reports/World-Cancer-Report-2014. [Last accessed on 22 Sep 2020].
2. Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, et al. Drug resistance in cancer: an overview. Cancers (Basel) 2014;6:1769-92.
3. Wu Q, Yang Z, Nie Y, Shi Y, Fan D. Multi-drug resistance in cancer chemotherapeutics: mechanisms and lab approaches. Cancer Lett 2014;347:159-66.
5. Kibria G, Hatakeyama H, Harashima H. Cancer multidrug resistance: mechanisms involved and strategies for circumvention using a drug delivery system. Arch Pharm Res 2014;37:4-15.
6. Provenzano PP, Hingorani SR. Hyaluronan, fluid pressure, and stromal resistance in pancreas cancer. Br J Cancer 2013;108:1-8.
7. Khawar IA, Kim JH, Kuh HJ. Improving drug delivery to solid tumors: priming the tumor microenvironment. J Control Release 2015;201:78-89.
8. Yap TA, Omlin A, De Bono JS. Development of therapeutic combinations targeting major cancer signaling pathways. J Clin Oncol 2013;31:1592-605.
9. Lee MJ, Ye AS, Gardino AK, Heijink AM, Sorger PK, et al. Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks. Cell 2012;149:780-94.
10. Iyer AK, Singh A, Ganta S, Amiji MM. Role of integrated cancer nanomedicine in overcoming drug resistance. Adv Drug Deliv Rev 2013;65:1784-802.
11. Vinogradov S, Wei X. Cancer stem cells and drug resistance: the potential of nanomedicine. Nanomedicine 2012;7:597-615.
12. Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 2001;41:189-207.
13. Ali A, Zafar H, Zia M, ul Haq I, Phull AR, et al. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl 2016;9:49-67.
14. Wang Y, Zhang Z, Xu S, Wang F, Shen Y, et al. pH, redox and photothermal tri-responsive DNA/polyethylenimine conjugated gold nanorods as nanocarriers for specific intracellular co-release of doxorubicin and chemosensitizer pyronaridine to combat multidrug resistant cancer. Nanomed Nanotechnol Biol Med 2017;13:1785-95.
15. Song L, Jiang Q, Liu J, Li N, Liu Q, et al. DNA origami/gold nanorod hybrid nanostructures for the circumvention of drug resistance. Nanoscale 2017;9:7750-4.
16. Biju V. Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem Soc Rev 2014;43:744-64.
17. Yang J, Yao MH, Wen L, Song JT, Zhang MZ, et al. Multifunctional quantum dot-polypeptide hybrid nanogel for targeted imaging and drug delivery. Nanoscale 2014;6:11282-92.
18. Sun L, Wang D, Chen Y, Wang L, Huang P, et al. Core-shell hierarchical mesostructured silica nanoparticles for gene/chemo-synergetic stepwise therapy of multidrug-resistant cancer. Biomaterials 2017;133:219-28.
19. Liu J, Li Q, Zhang J, Huang L, Qi C, et al. Safe and effective reversal of cancer multidrug resistance using sericin-coated mesoporous silica nanoparticles for lysosome-targeting delivery in mice. Small 2017;13:1602567.
20. Farvadi F, Tamaddon AM, Sobhani Z, Abolmaali SS. Polyionic complex of single-walled carbon nanotubes and PEG-grafted-hyperbranched polyethyleneimine (PEG-PEI-SWNT) for an improved doxorubicin loading and delivery: development and in vitro characterization. Artif Cells Nanomedicine Biotechnol 2017;45:855-63.
21. Pai CL, Chen YC, Hsu CY, Su HL, Lai PS. Carbon nanotube-mediated photothermal disruption of endosomes/lysosomes reverses doxorubicin resistance in MCF-7/ADR cells. J Biomed Nanotechnol 2016;12:619-29.
22. Alamoudi K, Martins P, Croissant JG, Patil S, Omar H, et al. Thermoresponsive pegylated bubble liposome nanovectors for efficient siRNA delivery via endosomal escape. Nanomedicine 2017;12:1421-33.
23. Gao M. Xu Y, Qiu L, Sensitization of multidrug-resistant malignant cells by liposomes co-encapsulating doxorubicin and chloroquine through autophagic inhibition. J Liposome Res 2017;27:151-60.
24. El-Say KM, El-Sawy HS. Polymeric nanoparticles: promising platform for drug delivery. Int J Pharm 2017;528:675-91.
25. Huang S, Liu J, Zhu H, Hussain A, Liu Q, et al. PEGylated doxorubicin micelles loaded with curcumin exerting synergic effects on multidrug resistant tumor cells. J Nanosci Nanotechnol 2017;17:2873-80.
26. Li Y, Xu X, Zhang X, Li Y, Zhang Z, et al. Tumor-specific multiple stimuli-activated dendrimeric nanoassemblies with metabolic blockade surmount chemotherapy resistance. ACS Nano 2017;11:416-29.
27. Hare JI, Lammers T, Ashford MB, Puri S, Storm G, et al. Challenges and strategies in anti-cancer nanomedicine development: an industry perspective. Adv Drug Deliv Rev 2017;108:25-38.
29. Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 2014;66:2-25.
30. Cerqueira BBS, Lasham A, Shelling AN, Al-Kassas R. Nanoparticle therapeutics: technologies and methods for overcoming cancer. Eur J Pharm Biopharm 2015;97A:140-51.
31. Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater 2013;12:991-1003.
32. Torchilin VP. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov 2014;13:813-27.
33. Sosnik A, Bendayan R. Drug efflux pumps in cancer resistance pathways: from molecular recognition and characterization to possible inhibition strategies in chemotherapy. 1st ed. Academic Press; 2019. p. 394.
34. Zhang H, Jiang H, Wang X, Chen B. Reversion of multidrug resistance in tumor by biocompatible nanomaterials. Mini Rev Med Chem 2010;10:737-45.
35. Gobbo OL, Sjaastad K, Radomski MW, Volkov Y, Prina-Mello A. Magnetic nanoparticles in cancer theranostics. Theranostics 2015;5:1249-63.
36. Dadfar SM, Roemhild K, Drude NI, von Stillfried S, Knüchel R, et al. Iron oxide nanoparticles: diagnostic, therapeutic and theranostic applications. Adv Drug Deliv Rev 2019;138:302-25.
37. Elumalai R, Patil S, Maliyakkal N, Rangarajan A, Kondaiah P, et al. Protamine-carboxymethyl cellulose magnetic nanocapsules for enhanced delivery of anticancer drugs against drug resistant cancers. Nanomed Nanotechnol Biol Med 2015;11:969-81.
38. Kievit FM, Wang FY, Fang C, Mok H, Wang K, et al. Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro. J Control Release 2011;152:76-83.
39. Ling D, Park W, Park SJ, Lu Y, Kim KS, et al. Multifunctional tumor pH-sensitive self-assembled nanoparticles for bimodal imaging and treatment of resistant heterogeneous tumors. J Am Chem Soc 2014;136:5647-55.
40. Mokhtari RB, Homayouni TS, Baluch N, Morgatskaya E., Kumar S, et al. Combination therapy in combating cancer. Oncotarget 2017;8:38022-43.
41. Hu CMJ, Zhang L. Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem Pharmacol 2012;83:1104-11.
42. Cheng J, Wu W, Chen BA, Gao F, Xu W, et al. Effect of magnetic nanoparticles of Fe3O4 and 5 bromotetrandrine on reversal of multidrug resistance in K562/A02 leukemic cells. Int J Nanomedicine 2009;2004:209-16.
43. Cheng J, Cheng L, Chen B, Xia G, Gao C, et al. Effect of magnetic nanoparticles of Fe3O4 and wogonin on the reversal of multidrug resistance in K562/A02 cell line. Int J Nanomedicine 2012;2012:2843-52.
44. Hildebrandt B, Wust P, Ahlers O, Dieing A, Sreenivasa G, et al. The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol 2002;43:33-56.
45. Kossatz S, Grandke J, Couleaud P, Latorre A, Aires A, et al. Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery. Breast Cancer Res 2015;17:66.
46. Ren Y, Zhang H, Chen B, Cheng J, Cai X, et al. Multifunctional magnetic Fe3O4 nanoparticles combined with chemotherapy and hyperthermia to overcome multidrug resistance. Int J Nanomedicine 2012;7:2261-9.
47. Tian Y, Jiang X, Chen X, Shao Z, Yang W. Doxorubicin-loaded magnetic silk fibroin nanoparticles for targeted therapy of multidrug-resistant cancer. Adv Mater 2014;26:7393-8.
48. Lin G, Zhu W, Yang L, Wu J, Lin B, et al. Delivery of siRNA by MRI-visible nanovehicles to overcome drug resistance in MCF-7/ADR human breast cancer cells. Biomaterials 2014;35:9495-507.
49. Wu B, Torres-Duarte C, Cole BJ, Cherr GN. Copper oxide and zinc oxide nanomaterials act as inhibitors of multidrug resistance transport in sea urchin embryos: their role as chemosensitizers. Environ Sci Technol 2015;49:5760-70.
50. Chen Y, Ye D, Wu M, Chen H, Zhang L, et al. Break-up of two-dimensional MnO2 nanosheets promotes ultrasensitive pH-triggered theranostics of cancer. Adv Mater 2014;26:7019-26.
51. Ock K, Il Jeon W, Ganbold EO, Kim M, Park J, et al. Real-time monitoring of glutathione-triggered thiopurine anticancer drug release in live cells investigated by surface-enhanced raman scattering. Anal Chem 2012;84:2172-8.
52. Cai X, Li W, Kim C, Yuan Y, Xia Y, et al. In vivo quantitative evaluation of the transport kinetics of gold nanocages in a lymphatic system by noninvasive photoacoustic tomography. ACS Nano 2011;5:9658-67.
53. Chen YH, Tsai CY, Huang PY, Chang MY, Cheng PC, et al. Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lung tumor model. Mol Pharm 2007;4:713-22.
54. Gu YJ, Cheng J, Man CWY, Wong WT, Cheng SH. Gold-doxorubicin nanoconjugates for overcoming multidrug resistance. Nanomed Nanotechnol Biol Med 2012;8:204-11.
55. Wang F, Wang YC, Dou S, Xiong MH, Sun TM, et al. Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano 2011;5:3679-92.
56. Rajput S, Puvvada N, Kumar BNP, Sarkar S, Konar S, et al. Overcoming Akt induced therapeutic resistance in breast cancer through siRNA and thymoquinone encapsulated multilamellar gold niosomes. Mol Pharm 2015;12:4214-25.
57. Cheng L, Wang C, Feng L, Yang K, Liu Z. Functional nanomaterials for phototherapies of cancer. Chem Rev 2014;114:10869-939.
58. Bhana S, Lin G, Wang L, Starring H, Mishra SR, et al. Near-infrared-absorbing gold nanopopcorns with iron oxide cluster core for magnetically amplified photothermal and photodynamic cancer therapy. ACS Appl Mater Interfaces 2015;7:11637-47.
59. Lee SM, Kim HJ, Kim SY, Kwon MK, Kim S, et al. Drug-loaded gold plasmonic nanoparticles for treatment of multidrug resistance in cancer. Biomaterials 2014;35:2272-82.
60. Thambiraj S, Hema S, Ravi Shankaran D. Functionalized gold nanoparticles for drug delivery applications. Mater Today Proc 2018;5:16763-73.
61. Luo C, Li Y, Guo L, Zhang F, Liu H, et al. Graphene quantum dots downregulate multiple multidrug-resistant genes via interacting with their C-rich promoters. Adv Healthc Mater 2017;6:1700328.
62. Sun Y, Zhang J, Yin H, Yin J. MicroRNA-mediated suppression of P-glycoprotein by quantum dots in lung cancer cells. J Appl Toxicol 2020;40:525-34.
63. Yezhelyev MV, Qi L, O’Regan RM, Nie S, Gao X. Proton-sponge coated quantum dots for siRNA delivery and intracellular imaging. J Am Chem Soc 2008;130:9006-12.
64. Kairdolf BA, Smith AM, Stokes TH, Wang MD, Young AN, et al. Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annu Rev Anal Chem 2013;6:143-62.
65. Li JM, Wang YY, Zhao MX, Tan CP, Li YQ, et al. Multifunctional QD-based co-delivery of siRNA and doxorubicin to HeLa cells for reversal of multidrug resistance and real-time tracking. Biomaterials 2012;33:2780-90.
66. Fang M, Chen M, Liu L, Li Y. Applications of quantum dots in cancer detection and diagnosis: a review. J Biomed Nanotechnol 2017;13:1-16.
67. Tang F, Li L, Chen D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 2012;24:1504-34.
68. Mamaeva V, Sahlgren C, Lindén M. Mesoporous silica nanoparticles in medicine-Recent advances. Adv Drug Deliv Rev 2013;65:689-702.
69. He Q, Shi J. MSN anti-cancer nanomedicines: chemotherapy enhancement, overcoming of drug resistance, and metastasis inhibition. Adv Mater 2014;26:391-411.
70. Gao Y, Chen Y, Ji X, He X, Yin Q, et al. Cancer cells by tuning the shell-pore sizes of mesoporous silica nanoparticles. ACS Nano 2011;5:9788-98.
71. Wang X, Teng Z, Wang H, Wang C, Liu Y, et al. Increasing the cytotoxicity of doxorubicin in breast cancer MCF-7 cells with multidrug resistance using a mesoporous silica nanoparticle drug delivery system. Int J Clin Exp Pathol 2014;7:1337-47.
72. Jia L, Li Z, Shen J, Zheng D, Tian X, et al. Multifunctional mesoporous silica nanoparticles mediated co-delivery of paclitaxel and tetrandrine for overcoming multidrug resistance. Int J Pharm 2015;489:318-30.
73. Liu H, Zhang Z, Chi X, Zhao Z, Huang D, et al. Arsenite-loaded nanoparticles inhibit PARP-1 to overcome multidrug resistance in hepatocellular carcinoma cells. Sci Rep 2016;6:31009.
74. Li X, He Q, Shi J. Global gene expression analysis of cellular death mechanisms induced by mesoporous silica nanoparticle-based drug delivery system. ACS Nano 2014;8:1309-20.
75. Li X, Pan L, Shi J. Nuclear-targeting MSNs-based drug delivery system: global gene expression analysis on the MDR-overcoming mechanisms. Adv Healthc Mater 2015;4:2641-8.
76. He Q, Gao Y, Zhang L, Zhang Z, Gao F, et al. A pH-responsive mesoporous silica nanoparticles-based multi-drug delivery system for overcoming multi-drug resistance. Biomaterials 2011;32:7711-20.
77. Liu J, Wang B, Budi Hartono S, Liu T, Kantharidis P, et al. Magnetic silica spheres with large nanopores for nucleic acid adsorption and cellular uptake. Biomaterials 2012;33:970-8.
78. Meng H, Mai WX, Zhang H, Xue M, Xia T, et al. Codelivery of an optimal drug/siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo. ACS Nano 2013;7:994-1005.
79. Han L, Tang C, Yin C. Dual-targeting and pH/redox-responsive multi-layered nanocomplexes for smart co-delivery of doxorubicin and siRNA. Biomaterials 2015;60:42-52.
80. Yang P, Gai S, Lin J. Functionalized mesoporous silica materials for controlled drug delivery. Chem Soc Rev 2012;41:3679-98.
81. Chen Y, Chen H, Shi J. Drug delivery/imaging multifunctionality of mesoporous silica-based composite nanostructures. Expert Opin Drug Deliv 2014;11:917-30.
82. Gong H, Peng R, Liu Z. Carbon nanotubes for biomedical imaging: the recent advances. Adv Drug Deliv Rev 2013;65:1951-63.
83. Kruss S, Hilmer AJ, Zhang J, Reuel NF, Mu B, et al. Carbon nanotubes as optical biomedical sensors. Adv Drug Deliv Rev 2013;65:1933-50.
84. Thomsen C, Reich S. Raman scattering in carbon nanotubes. Top Appl Phys 2006;108:115-232.
85. Saito N, Aoki K, Usui Y, Shimizu M, Hara K, et al. Application of carbon fibers to biomaterials: a new era of nano-level control of carbon fibers after 30-years of development. Chem Soc Rev 2011;40:3824-34.
86. Cheng J, Meziani MJ, Sun YP, Cheng SH. Poly(ethylene glycol)-conjugated multi-walled carbon nanotubes as an efficient drug carrier for overcoming multidrug resistance. Toxicol Appl Pharmacol 2011;250:184-93.
87. Wu CH, Cao C, Kim JH, Hsu CH, Wanebo HJ, et al. Trojan-horse nanotube on-command intracellular drug delivery. Nano Lett 2012;12:5475-80.
88. Bhirde AA, Chikkaveeraiah BV, Srivatsan A, Niu G, Jin AJ, et al. Targeted therapeutic nanotubes influence the viscoelasticity of cancer cells to overcome drug resistance. ACS Nano 2014;8:4177-89.
89. Kumar M, Sharma G, Misra C, Kumar R, Singh B, et al. N-desmethyl tamoxifen and quercetin-loaded multiwalled CNTs: a synergistic approach to overcome MDR in cancer cells. Mater Sci Eng C 2018;89:274-82.
90. Wang L, Sun Q, Wang X, Wen T, Yin JJ, et al. Using hollow carbon nanospheres as a light-induced free radical generator to overcome chemotherapy resistance. J Am Chem Soc 2015;137:1947-55.
91. Suo X, Eldridge BN, Zhang H, Mao C, Min Y, et al. P-glycoprotein-targeted photothermal therapy of drug-resistant cancer cells using antibody-conjugated carbon nanotubes. ACS Appl Mater Interfaces 2018;10:33464-73.
92. Yang K, Feng L, Shi X, Liu Z. Nano-graphene in biomedicine: theranostic applications. Chem Soc Rev 2013;42:530-47.
93. Zhi F, Dong H, Jia X, Guo W, Lu H, et al. Functionalized graphene oxide mediated adriamycin delivery and miR-21 gene silencing to overcome tumor multidrug resistance in Vitro. PLoS One 2013;8:e60034.
94. Yang HW, Lu YJ, Lin KJ, Hsu SC, Huang CY, et al. EGRF conjugated PEGylated nanographene oxide for targeted chemotherapy and photothermal therapy. Biomaterials 2013;34:7204-14.
95. Feng L, Li K, Shi X, Gao M, Liu J, et al. Smart pH-responsive nanocarriers based on nano-graphene oxide for combined chemo- and photothermal therapy overcoming drug resistance. Adv Healthc Mater 2014;3:1261-71.
96. Tran TH, Nguyen HT, Pham TT, Choi JY, Choi HG, et al. Development of a graphene oxide nanocarrier for dual-drug chemo-phototherapy to overcome drug resistance in cancer. ACS Appl Mater Interfaces 2015;7:28647-55.
97. Li Y, Gao X, Yu Z, Liu B, Pan W, et al. Reversing multidrug resistance by multiplexed gene silencing for enhanced breast cancer chemotherapy. ACS Appl Mater Interfaces 2018;10:15461-6.
98. Battigelli A, Ménard-Moyon C, Da Ros T, Prato M, Bianco A. Endowing carbon nanotubes with biological and biomedical properties by chemical modifications. Adv Drug Deliv Rev 2013;65:1899-920.
99. Huang Y, Cole SPC, Cai T, Cai Y. Applications of nanoparticle drug delivery systems for the reversal of multidrug resistance in cancer. Oncol Lett 2016;12:11-5.
100. Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, et al. Advances and challenges of liposome assisted drug delivery. Front Pharmacol 2015;6:286.
101. Hua S, Wu SY. The use of lipid-based nanocarriers for targeted pain therapies. Front Pharmacol 2013;4:143.
102. Il Kang D, Kang HK, Gwak HS, Han HK, Lim SJ. Liposome composition is important for retention of liposomal rhodamine in P-glycoprotein-overexpressing cancer cells. Drug Deliv 2009;16:261-7.
103. Yang T, De Cui F, Choi MK, Cho JW, Chung SJ, et al. Enhanced solubility and stability of PEGylated liposomal paclitaxel: in vitro and in vivo evaluation. Int J Pharm 2007;338:317-26.
104. Kapse-Mistry S, Govender T, Srivastava R, Yergeri M. Nanodrug delivery in reversing multidrug resistance in cancer cells. Front Pharmacol 2014;5:159.
105. Meng J, Guo F, Xu H, Liang W, Wang C, et al. Combination therapy using co-encapsulated resveratrol and paclitaxel in liposomes for drug resistance reversal in breast cancer cells in vivo. Sci Rep 2016;6:22390.
106. Van Helvoort A, Smith AJ, Sprong H, Fritzsche I, Schinkel AH, et al. MDR1 P-glycoprotein is a lipid translocase of broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine. Cell 1996;87:507-17.
107. Bosch I, Dunussi-Joannopoulos K, Wu RL, Furlong ST, Croop J. Phosphatidylcholine and phosphatidylethanolamine behave as substrates of the human MDR1 P-glycoprotein. Biochemistry 1997;36:5685-94.
108. Ashley JD, Quinlan CJ, Schroeder VA, Suckow MA, Pizzuti VJ, et al. Dual Carfilzomib and Doxorubicin-loaded liposomal nanoparticles for synergistic efficacy in multiple myeloma. Mol Cancer Ther 2016;15:1452-9.
109. Tolcher AW, Mayer LD. Improving combination cancer therapy: the CombiPlex® development platform. Futur Oncol 2018;14:1317-32.
110. Vaidya B, Nayak MK, Dash D, Agrawal GP, Vyas SP. Development and characterization of highly selective target-sensitive liposomes for the delivery of streptokinase: in vitro/in vivo studies. Drug Deliv 2016;23:791-7.
111. Jiang L, Li L, He X, Yi Q, He B, et al. Overcoming drug-resistant lung cancer by paclitaxel loaded dual-functional liposomes with mitochondria targeting and pH-response. Biomaterials 2015;52:126-39.
112. Waghmare AS, Grampurohit ND, Gadhave MV, Gaikwad DD, Jadhav SI. Solid lipid nanoparticles: a promising drug delivery system. IRJP 2012;3:100-7.
113. Baek JS, Cho CW. Controlled release and reversal of multidrug resistance by co-encapsulation of paclitaxel and verapamil in solid lipid nanoparticles. Int J Pharm 2015;478:617-24.
114. Zhao X, Chen Q, Li Y, Tang H, Liu W, et al. Doxorubicin and curcumin co-delivery by lipid nanoparticles for enhanced treatment of diethylnitrosamine-induced hepatocellular carcinoma in mice. Eur J Pharm Biopharm 2015;93:27-36.
115. Aznar MÁ, Lasa-Saracíbar B, Blanco-Prieto MJ. Edelfosine lipid nanoparticles overcome multidrug resistance in K-562 leukemia cells by a caspase-independent mechanism. Mol Pharm 2014;11:2650-8.
116. Chen HH, Huang WC, Chiang WH, Liu TI, Shen MY, et al. pH-responsive therapeutic solid lipid nanoparticles for reducing P-glycoprotein-mediated drug efflux of multidrug resistant cancer cells. Int J Nanomedicine 2015;10:5035-48.
117. Tamjidi F, Shahedi M, Varshosaz J, Nasirpour A. Nanostructured lipid carriers (NLC): a potential delivery system for bioactive food molecules. Innov Food Sci Emerg Technol 2013;19:29-43.
118. Ding X, Xu X, Zhao Y, Zhang L, Yu Y, et al. Tumor targeted nanostructured lipid carrier co-delivering paclitaxel and indocyanine green for laser triggered synergetic therapy of cancer. RSC Adv 2017;7:35086-95.
119. Li X, Jia X, Niu H. Nanostructured lipid carriers co-delivering lapachone and doxorubicin for overcoming multidrug resistance in breast cancer therapy. Int J Nanomedicine 2018;13:4107-19.
120. Dong X, Wang W, Qu H, Han D, Zheng J, et al. Targeted delivery of doxorubicin and vincristine to lymph cancer: evaluation of novel nanostructured lipid carriers in vitro and in vivo. Drug Deliv 2016;23:1374-8.
121. Yuan Y, Wang L, Du W, Ding Z, Zhang J, et al. Intracellular self-assembly of taxol nanoparticles for overcoming multidrug resistance. Angew Chemie Int Ed 2015;54:9700-4.
122. Wang D, Tang J, Wang Y, Ramishetti S, Fu Q, et al. Multifunctional nanoparticles based on a single-molecule modification for the treatment of drug-resistant cancer. Mol Pharm 2013;10:1465-9.
123. Shi Q, Zhang L, Liu M, Zhang X, Zhang X, et al. Reversion of multidrug resistance by a pH-responsive cyclodextrin-derived nanomedicine in drug resistant cancer cells. Biomaterials 2015;67:169-82.
124. Liu Y, Zhang D, Qiao ZY, Bin Qi G, Liang XJ, et al. A peptide-network weaved nanoplatform with tumor microenvironment responsiveness and deep tissue penetration capability for cancer therapy. Adv Mater 2015;27:5034-42.
125. Peng ZH, Kopeček J. Enhancing accumulation and penetration of HPMA copolymer-doxorubicin conjugates in 2D and 3D prostate cancer cells via iRGD conjugation with an MMP-2 cleavable spacer. J Am Chem Soc 2015;137:6726-9.
126. Dai Z, Yao Q, Zhu L. MMP2-sensitive PEG-lipid copolymers: a new type of tumor-targeted P-glycoprotein inhibitor. ACS Appl Mater Interfaces 2016;8:12661-73.
127. Zhu B, Yu L, Yue QC. Co-delivery of vincristine and quercetin by nanocarriers for lymphoma combination chemotherapy. Biomed Pharmacother 2017;91:287-94.
128. Yin Q, Shen J, Zhang Z, Yu H, Chen L, et al. Multifunctional nanoparticles improve therapeutic effect for breast cancer by simultaneously antagonizing multiple mechanisms of multidrug resistance. Biomacromolecules 2013;14:2242-52.
129. Patel J, Amrutiya J, Bhatt P, Javia A, Jain M, et al. Targeted delivery of monoclonal antibody conjugated docetaxel loaded PLGA nanoparticles into EGFR overexpressed lung tumour cells. J Microencapsul 2018;35:204-17.
130. Son J, Yang SM, Yi G, Roh YJ, Park H, et al. Folate-modified PLGA nanoparticles for tumor-targeted delivery of pheophorbide a in vivo. Biochem Biophys Res Commun 2018;498:523-8.
131. Byeon Y, Lee JW, Choi WS, Won JE, Kim GH, et al. CD44-targeting PLGA nanoparticles incorporating paclitaxel and FAK siRNA overcome chemoresistance in epithelial ovarian cancer. Cancer Res 2018;78:6247-56.
132. Wang Y, Dou L, He H, Zhang Y, Shen Q. Multifunctional nanoparticles as nanocarrier for vincristine sulfate delivery to overcome tumor multidrug resistance. Mol Pharm 2014;11:885-94.
133. Tang X, Liang Y, Feng X, Zhang R, Jin X, et al. Co-delivery of docetaxel and poloxamer 235 by PLGA-TPGS nanoparticles for breast cancer treatment. Mater Sci Eng C 2015;49:348-55.
134. Wang DF, Rong WT, Lu Y, Hou J, Qi SS, et al. TPGS2k/PLGA nanoparticles for overcoming multidrug resistance by interfering mitochondria of human alveolar adenocarcinoma cells. ACS Appl Mater Interfaces 2015;7:3888-901.
135. Roy A, Ernsting MJ, Undzys E, Li SD. A highly tumor-targeted nanoparticle of podophyllotoxin penetrated tumor core and regressed multidrug resistant tumors. Biomaterials 2015;52:335-46.
136. Halley PD, Lucas CR, McWilliams EM, Webber MJ, Patton RA, et al. Daunorubicin-loaded DNA origami nanostructures circumvent drug-resistance mechanisms in a leukemia model. Small 2016;12:308-20.
137. Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 2012;64:37-48.
139. Alakhova DY, Rapoport NY, Batrakova EV, Timoshin AA, Li S, et al. Differential metabolic responses to pluronic in MDR and non-MDR cells: a novel pathway for chemosensitization of drug resistant cancers. J Control Release 2010;142:89-100.
140. Batrakova EV, Li S, Elmquist WF, Miller DW, Alakhov VY, et al. Mechanism of sensitization of MDR cancer cells by Pluronic block copolymers: selective energy depletion. Br J Cancer 2001;85:1987-97.
141. Kabanov AV, Batrakova EV, Alakhov VY. An essential relationship between ATP depletion and chemosensitizing activity of pluronic block copolymers. J Control Release 2003;91:75-83.
142. Wang H, Li Y, Zhang M, Wu D, Shen Y, et al. Redox-activatable ATP-depleting micelles with dual modulation characteristics for multidrug-resistant cancer therapy. Adv Healthc Mater 2017;6:1601293.
143. Ma YC, Wang JX, Tao W, Sun CY, Wang YC, et al. Redox-responsive polyphosphoester-based micellar nanomedicines for overriding chemoresistance in breast cancer cells. ACS Appl Mater Interfaces 2015;7:26315-25.
144. Guo X, Wei X, Jing Y, Zhou S. Size changeable nanocarriers with nuclear targeting for effectively overcoming multidrug resistance in cancer therapy. Adv Mater 2015;27:6450-6.
145. Yu H, Cui Z, Yu P, Guo C, Feng B, et al. pH- and NIR light-responsive micelles with hyperthermia-triggered tumor penetration and cytoplasm drug release to reverse doxorubicin resistance in breast cancer. Adv Funct Mater 2015;25:2489-500.
146. Wang T, Wang D, Yu H, Wang M, Liu J, et al. Intracellularly acid-switchable multifunctional micelles for combinational photo/chemotherapy of the drug-resistant tumor. ACS Nano 2016;10:3496-508.
147. Lee ES, Na K, Bae YH. Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor. J Control Release 2005;103:405-18.
148. Mohajer G, Lee ES, Bae YH. Enhanced intercellular retention activity of novel pH-sensitive polymeric micelles in wild and multidrug resistant MCF-7 cells. Pharm Res 2007;24:1618-27.
149. Kim D, Lee ES, Park K, Kwon IC, Bae YH. Doxorubicin loaded pH-sensitive micelle: antitumoral efficacy against ovarian A2780/DOXR tumor. Pharm Res 2008;25:2074-82.
150. Abbasi E, Aval SF, Akbarzadeh A, Milani M, Nasrabadi HT. Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett 2014;9:247.
151. Lu HL, Syu WJ, Nishiyama N, Kataoka K, Lai PS. Dendrimer phthalocyanine-encapsulated polymeric micelle-mediated photochemical internalization extends the efficacy of photodynamic therapy and overcomes drug-resistance in vivo. J Control Release 2011;155:458-64.
152. ClinicalTrials.gov, US National Library of Medicine. Available from: https://clinicaltrials.gov/ct2/show/NCT00046514. [Last accessed on 28 July 2020].
153. ClinicalTrials.gov, US National Library of Medicine. Available from: https://clinicaltrials.gov/ct2/show/NCT00499252. [Last accessed on 28 July 2020].
154. ClinicalTrials.gov, US National Library of Medicine. Available from: https://clinicaltrials.gov/ct2/show/NCT00466960. [Last accessed on 28 July 2020].
155. ClinicalTrials.gov, US National Library of Medicine. Available from: https://clinicaltrials.gov/ct2/show/NCT01336062. [Last accessed on 28 July 2020].
156. ClinicalTrials.gov, US National Library of Medicine. Available from: https://clinicaltrials.gov/ct2/show/NCT03942068. [Last accessed on 28 July 2020].
157. ClinicalTrials.gov, US National Library of Medicine. Available from: https://clinicaltrials.gov/ct2/show/NCT01652079. [Last accessed on 28 July 2020].
158. ClinicalTrials.gov, US National Library of Medicine. Available from: [https://clinicaltrials.gov/ct2/show/NCT03742713. [Last accessed on 28 July 2020].
159. Rizvi SAA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J 2018;26:64-70.
161. Seaton A, Donaldson K. Nanoscience, nanotoxicology, and the need to think small. Lancet 2005;365:923-4.
162. Xia T, Kovochich M, Brant J, Hotze M, Sempf J, et al. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 2006;6:1794-807.
163. Vallhov H, Qin J, Johansson SM, Ahlborg N, Muhammed MA, et al. The importance of an endotoxin-free environment during the production of nanoparticles used in medical applications. Nano Lett 2006;6:1682-6.
164. Dobrovolskaia MA, McNeil SE. Understanding the correlation between in vitro and in vivo immunotoxicity tests for nanomedicines. J Control Release 2013;172:456-66.