REFERENCES

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394-424.

2. Cornford P, Bellmunt J, Bolla M, Briers E, De Santis M, et al. EAU-ESTRO-SIOG guidelines on prostate cancer. Part II: treatment of relapsing, metastatic, and castration-resistant prostate cancer. Eur Urol 2017;71:630-42.

3. Karantanos T, Evans CP, Tombal B, Thompson TC, Montironi R, et al. Understanding the mechanisms of androgen deprivation resistance in prostate cancer at the molecular level. Eur Urol 2015;67:470-9.

4. Petrylak DP, Tangen CM, Hussain MH, Lara PN, Jones JA, et al. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med 2004;351:1513-20.

5. Tannock IF, de Wit R, Berry WR, Horti J, Pluzanska A, et al; TAX 327 Investigators. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 2004;351:1502-12.

6. Kraus LA, Samuel SK, Schmid SM, Dykes DJ, Waud WR, et al. The mechanism of action of docetaxel (Taxotere) in xenograft models is not limited to bcl-2 phosphorylation. Invest New Drugs 2003;21:259-68.

7. Kroon J, Kooijman S, Cho NJ, Storm G, van der Pluijm G. Improving taxane-based chemotherapy in castration-resistant prostate cancer. Trends Pharmacol Sci 2016;37:451-62.

8. Gan L, Chen S, Wang Y, Watahiki A, Bohrer L, et al. Inhibition of the androgen receptor as a novel mechanism of taxol chemotherapy in prostate cancer. Cancer Res 2009;69:8386-94.

9. Mistry SJ, Oh WK. New paradigms in microtubule-mediated endocrine signaling in prostate cancer. Mol Cancer Ther 2013;12:555-66.

10. James ND, Sydes MR, Clarke NW, Mason MD, Dearnaley DP, et al. Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. Lancet 2016;387:1163-77.

11. Kyriakopoulos CE, Chen YH, Carducci MA, Liu G, Jarrard DF, et al. Chemohormonal therapy in metastatic hormone-sensitive prostate cancer: long-term survival analysis of the randomized phase III E3805 CHAARTED trial. J Clin Oncol 2018;36:1080-7.

12. Bumbaca B, Li W. Taxane resistance in castration-resistant prostate cancer: mechanisms and therapeutic strategies. Acta Pharm Sin B 2018;8:518-29.

13. Goodson HV, Jonasson EM. Microtubules and microtubule-associated proteins. Cold Spring Harb Perspect Biol 2018;10:a022608.

14. Lopata MA, Cleveland DW. In vivo microtubules are copolymers of available beta-tubulin isotypes: localization of each of six vertebrate beta-tubulin isotypes using polyclonal antibodies elicited by synthetic peptide antigens. J Cell Biol 1987;105:1707-20.

15. Kanakkanthara A, Eras J, Northcote PT, Cabral F, Miller JH. Resistance to peloruside A and laulimalide: functional significance of acquired βI-tubulin mutations at sites important for drug-tubulin binding. Curr Cancer Drug Targets 2014;14:79-90.

16. Hara T, Ushio K, Nishiwaki M, Kouno J, Araki H, et al. A mutation in beta-tubulin and a sustained dependence on androgen receptor signalling in a newly established docetaxel-resistant prostate cancer cell line. Cell Biol Int 2010;34:177-84.

17. Ploussard G, Terry S, Maillé P, Allory Y, Sirab N, et al. Class III beta-tubulin expression predicts prostate tumor aggressiveness and patient response to docetaxel-based chemotherapy. Cancer Res 2010;70:9253-64.

18. Sekino Y, Han X, Kawaguchi T, Babasaki T, Goto K, et al. TUBB3 reverses resistance to docetaxel and cabazitaxel in prostate cancer. Int J Mol Sci 2019;20:3936.

19. Maahs L, Sanchez BE, Gupta N, Van Harn M, Barrack ER, et al. Class III β-tubulin expression as a predictor of docetaxel-resistance in metastatic castration-resistant prostate cancer. PLoS One 2019;14:e0222510.

20. Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW. A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A 1975;72:1858-62.

21. Yang J, Yu Y, Liu W, Li Z, Wei Z, et al. Microtubule-associated protein tau is associated with the resistance to docetaxel in prostate cancer cell lines. Res Rep Urol 2017;9:71-7.

22. Hotte SJ. Addressing taxane resistance in metastatic castration-resistant prostate cancer: a focus on chaperone proteins. Future Oncol 2017;13:369-79.

23. Yang CH, Horwitz SB. Taxol((R)): the first microtubule stabilizing agent. Int J Mol Sci 2017;18:1733.

24. Gjyrezi A, Xie F, Voznesensky O, Khanna P, Calagua C, et al. Taxane resistance in prostate cancer is mediated by decreased drug-target engagement. J Clin Invest 2020;130:3287-98.

25. Darshan MS, Loftus MS, Thadani-Mulero M, Levy BP, Escuin D, et al. Taxane-induced blockade to nuclear accumulation of the androgen receptor predicts clinical responses in metastatic prostate cancer. Cancer Res 2011;71:6019-29.

26. Kuroda K, Liu H, Kim S, Guo M, Navarro V, et al. Docetaxel down-regulates the expression of androgen receptor and prostate-specific antigen but not prostate-specific membrane antigen in prostate cancer cell lines: implications for PSA surrogacy. Prostate 2009;69:1579-85.

27. Komura K, Jeong SH, Hinohara K, Qu F, Wang X, et al. Resistance to docetaxel in prostate cancer is associated with androgen receptor activation and loss of KDM5D expression. Proc Natl Acad Sci U S A 2016;113:6259-64.

28. Sekino Y, Sakamoto N, Goto K, Honma R, Shigematsu Y, et al. Transcribed ultraconserved region Uc.63+ promotes resistance to docetaxel through regulation of androgen receptor signaling in prostate cancer. Oncotarget 2017;8:94259-70.

29. Antonarakis ES, Tagawa ST, Galletti G, Worroll D, Ballman K, et al; TAXYNERGY Investigators. Randomized, Noncomparative, Phase II Trial of Early Switch From Docetaxel to Cabazitaxel or Vice Versa, With Integrated Biomarker Analysis, in Men With Chemotherapy-Naïve, Metastatic, Castration-Resistant Prostate Cancer. J Clin Oncol 2017;35:3181-8.

30. Conteduca V, Jayaram A, Romero-Laorden N, Wetterskog D, Salvi S, et al. Plasma androgen receptor and docetaxel for metastatic castration-resistant prostate cancer. Eur Urol 2019;75:368-73.

31. Hu R, Lu C, Mostaghel EA, Yegnasubramanian S, Gurel M, et al. Distinct transcriptional programs mediated by the ligand-dependent full-length androgen receptor and its splice variants in castration-resistant prostate cancer. Cancer Res 2012;72:3457-62.

32. Zhang G, Liu X, Li J, Ledet E, Alvarez X, et al. Androgen receptor splice variants circumvent AR blockade by microtubule-targeting agents. Oncotarget 2015;6:23358-71.

33. Thadani-Mulero M, Nanus DM, Giannakakou P. Androgen receptor on the move: boarding the microtubule expressway to the nucleus. Cancer Res 2012;72:4611-5.

34. Shimizu Y, Tamada S, Kato M, Hirayama Y, Takeyama Y, et al. Androgen receptor splice variant 7 drives the growth of castration resistant prostate cancer without being involved in the efficacy of taxane chemotherapy. J Clin Med 2018;7:444.

35. Lombard AP, Liu L, Cucchiara V, Liu C, Armstrong CM, et al. Intra versus inter cross-resistance determines treatment sequence between taxane and AR-targeting therapies in advanced prostate cancer. Mol Cancer Ther 2018;17:2197-205.

36. Shiota M, Dejima T, Yamamoto Y, Takeuchi A, Imada K, et al. Collateral resistance to taxanes in enzalutamide-resistant prostate cancer through aberrant androgen receptor and its variants. Cancer Sci 2018;109:3224-34.

37. Tagawa ST, Antonarakis ES, Gjyrezi A, Galletti G, Kim S, et al. Expression of AR-V7 and ARv567es in circulating tumor cells correlates with outcomes to taxane therapy in men with metastatic prostate cancer treated in TAXYNERGY. Clin Cancer Res 2019;25:1880-8.

38. Marín-Aguilera M, Jiménez N, Reig Ò, Montalbo R, Verma AK, et al. Androgen receptor and its splicing variant 7 expression in peripheral blood mononuclear cells and in circulating tumor cells in metastatic castration-resistant prostate cancer. Cells 2020;9:203.

39. Antonarakis ES, Lu C, Luber B, Wang H, Chen Y, et al. Androgen receptor splice variant 7 and efficacy of taxane chemotherapy in patients with metastatic castration-resistant prostate cancer. JAMA Oncol 2015;1:582-91.

40. Nimir M, Ma Y, Jeffreys SA, Opperman T, Young F, et al. Detection of AR-V7 in liquid biopsies of castrate resistant prostate cancer patients: a comparison of AR-V7 analysis in circulating tumor cells, circulating tumor RNA and exosomes. Cells 2019;8:688.

41. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 2005;310:644-8.

42. Brenner JC, Ateeq B, Li Y, Yocum AK, Cao Q, et al. Mechanistic rationale for inhibition of poly(ADP-ribose) polymerase in ETS gene fusion-positive prostate cancer. Cancer Cell 2011;19:664-78.

43. Tsourlakis MC, Weigand P, Grupp K, Kluth M, Steurer S, et al. βIII-tubulin overexpression is an independent predictor of prostate cancer progression tightly linked to ERG fusion status and PTEN deletion. Am J Pathol 2014;184:609-17.

44. Galletti G, Matov A, Beltran H, Fontugne J, Miguel Mosquera J, et al. ERG induces taxane resistance in castration-resistant prostate cancer. Nat Commun 2014;5:5548.

45. Shao L, Kahraman N, Yan G, Wang J, Ozpolat B, et al. Targeting the TMPRSS2/ERG fusion mRNA using liposomal nanovectors enhances docetaxel treatment in prostate cancer. Prostate 2020;80:65-73.

46. Reig O, Marin-Aguilera M, Carrera G, Jimenez N, Pare L, et al. TMPRSS2-ERG in blood and docetaxel resistance in metastatic castration-resistant prostate cancer. Eur Urol 2016;70:709-13.

47. Marin-Aguilera M, Reig O, Mila-Guasch M, Font A, Domenech M, et al. The influence of treatment sequence in the prognostic value of TMPRSS2-ERG as biomarker of taxane resistance in castration-resistant prostate cancer. Int J Cancer 2019;145:1970-81.

48. Sánchez C, Mendoza P, Contreras HR, Vergara J, McCubrey JA, et al. Expression of multidrug resistance proteins in prostate cancer is related with cell sensitivity to chemotherapeutic drugs. Prostate 2009;69:1448-59.

49. Sánchez C, Mercado A, Contreras HR, Mendoza P, Cabezas J, et al. Chemotherapy sensitivity recovery of prostate cancer cells by functional inhibition and knock down of multidrug resistance proteins. Prostate 2011;71:1810-7.

50. de Morrée E, van Soest R, Aghai A, de Ridder C, de Bruijn P, et al. Understanding taxanes in prostate cancer; importance of intratumoral drug accumulation. Prostate 2016;76:927-36.

51. Wang B, Dukarevich M, Sun EI, Yen MR, Saier MH Jr. Membrane porters of ATP-binding cassette transport systems are polyphyletic. J Membr Biol 2009;231:1-10.

52. Davidson AL, Dassa E, Orelle C, Chen J. Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 2008;72:317-64.

53. Martin SK, Kyprianou N. Exploitation of the androgen receptor to overcome taxane resistance in advanced prostate cancer. Adv Cancer Res 2015;127:123-58.

54. Sissung TM, Baum CE, Deeken J, Price DK, Aragon-Ching J, et al. ABCB1 genetic variation influences the toxicity and clinical outcome of patients with androgen-independent prostate cancer treated with docetaxel. Clin Cancer Res 2008;14:4543-9.

55. Lombard AP, Liu C, Armstrong CM, Cucchiara V, Gu X, et al. ABCB1 mediates cabazitaxel-docetaxel cross-resistance in advanced prostate cancer. Mol Cancer Ther 2017;16:2257-66.

56. Wang Y, Huang Z, Chen CZ, Liu C, Evans CP, et al. Therapeutic targeting of MDR1 expression by RORγ antagonists resensitizes cross-resistant CRPC to taxane via coordinated induction of cell death programs. Mol Cancer Ther 2020;19:364-74.

57. Kato T, Mizutani K, Kameyama K, Kawakami K, Fujita Y, et al. Serum exosomal P-glycoprotein is a potential marker to diagnose docetaxel resistance and select a taxoid for patients with prostate cancer. Urol Oncol 2015;33:385.e15-20.

58. Hagenbuch B, Meier PJ. Organic anion transporting polypeptides of the OATP/ SLC21 family: phylogenetic classification as OATP/ SLCO superfamily, new nomenclature and molecular/functional properties. Pflugers Arch 2004;447:653-65.

59. Smith NF, Acharya MR, Desai N, Figg WD, Sparreboom A. Identification of OATP1B3 as a high-affinity hepatocellular transporter of paclitaxel. Cancer Biol Ther 2005;4:815-8.

60. de Morrée ES, Böttcher R, van Soest RJ, Aghai A, de Ridder CM, et al. Loss of SLCO1B3 drives taxane resistance in prostate cancer. Br J Cancer 2016;115:674-81.

61. Pressler H, Sissung TM, Venzon D, Price DK, Figg WD. Expression of OATP family members in hormone-related cancers: potential markers of progression. PLoS One 2011;6:e20372.

62. Alsinnawi M, Zhang A, Bianchi-Frias D, Burns J, Cho E, et al. Association of prostate cancer SLCO gene expression with Gleason grade and alterations following androgen deprivation therapy. Prostate Cancer Prostatic Dis 2019;22:560-8.

63. Skvortsov S, Skvortsova II, Tang DG, Dubrovska A. Concise review: prostate cancer stem cells: current understanding. Stem Cells 2018;36:1457-74.

64. Castillo V, Valenzuela R, Huidobro C, Contreras HR, Castellon EA. Functional characteristics of cancer stem cells and their role in drug resistance of prostate cancer. Int J Oncol 2014;45:985-94.

65. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 2005;65:10946-51.

66. Burger PE, Gupta R, Xiong X, Ontiveros CS, Salm SN, et al. High aldehyde dehydrogenase activity: a novel functional marker of murine prostate stem/progenitor cells. Stem Cells 2009;27:2220-8.

67. van den Hoogen C, van der Horst G, Cheung H, Buijs JT, Lippitt JM, et al. High aldehyde dehydrogenase activity identifies tumor-initiating and metastasis-initiating cells in human prostate cancer. Cancer Res 2010;70:5163-73.

68. Castellón EA, Valenzuela R, Lillo J, Castillo V, Contreras HR, et al. Molecular signature of cancer stem cells isolated from prostate carcinoma and expression of stem markers in different Gleason grades and metastasis. Biol Res 2012;45:297-305.

69. Lai CJ, Lin CY, Liao WY, Hour TC, Wang HD, et al. CD44 promotes migration and invasion of docetaxel-resistant prostate cancer cells likely via induction of Hippo-Yap signaling. Cells 2019;8:295.

70. Marin-Aguilera M, Codony-Servat J, Reig O, Lozano JJ, Fernandez PL, et al. Epithelial-to-mesenchymal transition mediates docetaxel resistance and high risk of relapse in prostate cancer. Mol Cancer Ther 2014;13:1270-84.

71. Domingo-Domenech J, Vidal SJ, Rodriguez-Bravo V, Castillo-Martin M, Quinn SA, et al. Suppression of acquired docetaxel resistance in prostate cancer through depletion of notch- and hedgehog-dependent tumor-initiating cells. Cancer Cell 2012;22:373-88.

72. Mittal K, Donthamsetty S, Kaur R, Yang C, Gupta MV, et al. Multinucleated polyploidy drives resistance to Docetaxel chemotherapy in prostate cancer. Br J Cancer 2017;116:1186-94.

73. Salem O, Hansen CG. The hippo pathway in prostate cancer. Cells 2019;8:370.

74. Gruber M, Handle F, Culig Z. The stem cell inhibitor salinomycin decreases colony formation potential and tumor-initiating population in docetaxel-sensitive and docetaxel-resistant prostate cancer cells. Prostate 2020;80:267-73.

75. Trerotola M, Rathore S, Goel HL, Li J, Alberti S, et al. CD133, Trop-2 and alpha2beta1 integrin surface receptors as markers of putative human prostate cancer stem cells. Am J Transl Res 2010;2:135-44.

76. Kanwal R, Shukla S, Walker E, Gupta S. Acquisition of tumorigenic potential and therapeutic resistance in CD133+ subpopulation of prostate cancer cells exhibiting stem-cell like characteristics. Cancer Lett 2018;430:25-33.

77. Tan H, Hou N, Liu Y, Liu B, Cao W, et al. CD133 antibody targeted delivery of gold nanostars loading IR820 and docetaxel for multimodal imaging and near-infrared photodynamic/photothermal/chemotherapy against castration resistant prostate cancer. Nanomedicine 2020;27:102192.

78. Carceles-Cordon M, Kelly WK, Gomella L, Knudsen KE, Rodriguez-Bravo V, et al. Cellular rewiring in lethal prostate cancer: the architect of drug resistance. Nat Rev Urol 2020;17:292-307.

79. Qiu S, Deng L, Bao Y, Jin K, Tu X, et al. Reversal of docetaxel resistance in prostate cancer by Notch signaling inhibition. Anticancer Drugs 2018;29:871-9.

80. Liu C, Li Z, Bi L, Li K, Zhou B, et al. NOTCH1 signaling promotes chemoresistance via regulating ABCC1 expression in prostate cancer stem cells. Mol Cell Biochem 2014;393:265-70.

81. Mimeault M, Johansson SL, Vankatraman G, Moore E, Henichart JP, et al. Combined targeting of epidermal growth factor receptor and hedgehog signaling by gefitinib and cyclopamine cooperatively improves the cytotoxic effects of docetaxel on metastatic prostate cancer cells. Mol Cancer Ther 2007;6:967-78.

82. Mimeault M, Johansson SL, Henichart JP, Depreux P, Batra SK. Cytotoxic effects induced by docetaxel, gefitinib, and cyclopamine on side population and nonside population cell fractions from human invasive prostate cancer cells. Mol Cancer Ther 2010;9:617-30.

83. Cui D, Dai J, Keller JM, Mizokami A, Xia S, et al. Notch pathway inhibition using PF-03084014, a γ-secretase inhibitor (GSI), enhances the antitumor effect of docetaxel in prostate cancer. Clin Cancer Res 2015;21:4619-29.

84. Mimeault M, Rachagani S, Muniyan S, Seshacharyulu P, Johansson SL, et al. Inhibition of hedgehog signaling improves the anti-carcinogenic effects of docetaxel in prostate cancer. Oncotarget 2015;6:3887-903.

85. Rath O, Kozielski F. Kinesins and cancer. Nat Rev Cancer 2012;12:527-39.

86. Vale RD. The molecular motor toolbox for intracellular transport. Cell 2003;112:467-80.

87. Kapitein LC, Peterman EJ, Kwok BH, Kim JH, Kapoor TM, et al. The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks. Nature 2005;435:114-8.

88. Beer TM, Goldman B, Synold TW, Ryan CW, Vasist LS, et al. Southwest Oncology Group phase II study of ispinesib in androgen-independent prostate cancer previously treated with taxanes. Clin Genitourin Cancer 2008;6:103-9.

89. Wiltshire C, Singh BL, Stockley J, Fleming J, Doyle B, et al. Docetaxel-resistant prostate cancer cells remain sensitive to S-trityl-L-cysteine-mediated Eg5 inhibition. Mol Cancer Ther 2010;9:1730-9.

90. Kwon M, Godinho SA, Chandhok NS, Ganem NJ, Azioune A, et al. Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev 2008;22:2189-203.

91. Sekino Y, Oue N, Shigematsu Y, Ishikawa A, Sakamoto N, et al. KIFC1 induces resistance to docetaxel and is associated with survival of patients with prostate cancer. Urol Oncol 2017;35:31.e13-20.

92. Sekino Y, Oue N, Koike Y, Shigematsu Y, Sakamoto N, et al. KIFC1 inhibitor CW069 induces apoptosis and reverses resistance to docetaxel in prostate cancer. J Clin Med 2019;8:225.

93. Yang J, Nie J, Ma X, Wei Y, Peng Y, et al. Targeting PI3K in cancer: mechanisms and advances in clinical trials. Mol Cancer 2019;18:26.

94. Malik SN, Brattain M, Ghosh PM, Troyer DA, Prihoda T, et al. Immunohistochemical demonstration of phospho-Akt in high Gleason grade prostate cancer. Clin Cancer Res 2002;8:1168-71.

95. Carver BS, Chapinski C, Wongvipat J, Hieronymus H, Chen Y, et al. Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell 2011;19:575-86.

96. Kosaka T, Miyajima A, Shirotake S, Suzuki E, Kikuchi E, et al. Long-term androgen ablation and docetaxel up-regulate phosphorylated Akt in castration resistant prostate cancer. J Urol 2011;185:2376-81.

97. Yasumizu Y, Miyajima A, Kosaka T, Miyazaki Y, Kikuchi E, et al. Dual PI3K/mTOR inhibitor NVP-BEZ235 sensitizes docetaxel in castration resistant prostate cancer. J Urol 2014;191:227-34.

98. Davies BR, Greenwood H, Dudley P, Crafter C, Yu DH, et al. Preclinical pharmacology of AZD5363, an inhibitor of AKT: pharmacodynamics, antitumor activity, and correlation of monotherapy activity with genetic background. Mol Cancer Ther 2012;11:873-87.

99. Crabb SJ, Birtle AJ, Martin K, Downs N, Ratcliffe I, et al. ProCAID: a phase I clinical trial to combine the AKT inhibitor AZD5363 with docetaxel and prednisolone chemotherapy for metastatic castration resistant prostate cancer. Invest New Drugs 2017;35:599-607.

100. Gorin MA, Verdone JE, van der Toom E, Bivalacqua TJ, Allaf ME, et al. Circulating tumour cells as biomarkers of prostate, bladder, and kidney cancer. Nat Rev Urol 2017;14:90-7.

101. Iacovelli R, Ciccarese C, Schinzari G, Rossi E, Maiorano BA, et al. Biomarkers of response to advanced prostate cancer therapy. Expert Rev Mol Diagn 2020;20:195-205.

102. Goldkorn A, Ely B, Quinn DI, Tangen CM, Fink LM, et al. Circulating tumor cell counts are prognostic of overall survival in SWOG S0421: a phase III trial of docetaxel with or without atrasentan for metastatic castration-resistant prostate cancer. J Clin Oncol 2014;32:1136-42.

103. Vogelzang NJ, Fizazi K, Burke JM, De Wit R, Bellmunt J, et al. Circulating tumor cells in a Phase 3 study of docetaxel and prednisone with or without lenalidomide in metastatic castration-resistant prostate cancer. Eur Urol 2017;71:168-71.

104. Underhill HR, Kitzman JO, Hellwig S, Welker NC, Daza R, et al. Fragment length of circulating tumor DNA. PLoS Genet 2016;12:e1006162.

105. Kienel A, Porres D, Heidenreich A, Pfister D. cfDNA as a prognostic marker of response to taxane based chemotherapy in patients with prostate cancer. J Urol 2015;194:966-71.

106. Mehra N, Dolling D, Sumanasuriya S, Christova R, Pope L, et al. Plasma cell-free DNA concentration and outcomes from taxane therapy in metastatic castration-resistant prostate cancer from two phase III trials (FIRSTANA and PROSELICA). European Urology 2018;74:283-91.

Cancer Drug Resistance
ISSN 2578-532X (Online)

Portico

All published articles will preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles will preserved here permanently:

https://www.portico.org/publishers/oae/