REFERENCES

1. Barkal AA, Weiskopf K, Kao KS, Gordon SR, Rosental B, et al. Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy. Nat Immunol 2018;19:76-84.

2. Liu P, Zhao L, Loos F, Marty C, Xie W, et al. Immunosuppression by mutated calreticulin released from malignant cells. Mol Cell 2020;77:748-60.e9.

3. Gardai SJ, McPhillips KA, Frasch SC, Janssen WJ, Starefeldt A, et al. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 2005;123:321-34.

4. Willingham SB, Volkmer JP, Gentles AJ, Sahoo D, Dalerba P, et al. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci 2012;109:6662-7.

5. Sakakura K, Takahashi H, Kaira K, Toyoda M, Murata T, et al. Relationship between tumor-associated macrophage subsets and CD47 expression in squamous cell carcinoma of the head and neck in the tumor microenvironment. Lab Investig 2016;96:994-1003.

6. Zhang M, Hutter G, Kahn SA, Azad TD, Gholamin S, et al. Anti-CD47 treatment stimulates phagocytosis of glioblastoma by M1 and M2 polarized macrophages and promotes M1 polarized macrophages in vivo. PLoS One 2016;11:e0153550.

7. Zhang Y, Sime W, Juhas M, Sjölander A. Crosstalk between colon cancer cells and macrophages via inflammatory mediators and CD47 promotes tumour cell migration. Eur J Cancer 2013;49:3320-34.

8. Liu Q, Wen W, Tang L, Qin CJ, Lin Y, et al. Inhibition of SIRPα in dendritic cells potentiates potent antitumor immunity. Oncoimmunology 2016;5:e1183850.

9. Jayaraman Rukmini S, Bi H, Sen P, Everhart B, Jin S, et al. Inducing tumor suppressive microenvironments through genome edited CD47−/− syngeneic cell vaccination. Sci Rep 2019;9:20057.

10. Treffers LW, Ten Broeke T, Rösner T, Jansen JHM, van Houdt M, et al. IgA-mediated killing of tumor cells by neutrophils is enhanced by CD47-SIRPα checkpoint inhibition. Cancer Immunol Res 2020;8:120-30.

11. Kim MJ, Lee JC, Lee JJ, Kim S, Lee SG, et al. Association of CD47 with natural killer cell-mediated cytotoxicity of head-and-neck squamous cell carcinoma lines. Tumour Biol 2008;29:28-34.

12. Nath PR, Pal-Nath D, Mandal A, Cam MC, Schwartz AL, et al. Natural killer cell recruitment and activation are regulated by CD47 expression in the tumor microenvironment. Cancer Immunol Res 2019;7:1547-61.

13. Boukhari A, Alhosin M, Bronner C, Sagini K, Truchot C, et al. CD47 activation-induced UHRF1 over-expression is associated with silencing of tumor suppressor gene p16INK4A in glioblastoma cells. Anticancer Res 2015;35:149-58.

14. Kaur S, Schwartz AL, Jordan DG, Soto-Pantoja DR, Kuo B, et al. Identification of schlafen-11 as a target of CD47 signaling that regulates sensitivity to ionizing radiation and topoisomerase inhibitors. Front Oncol 2019;9:994.

15. Koh E, Lee EJ, Nam GH, Hong Y, Cho E, et al. Exosome-SIRPα, a CD47 blockade increases cancer cell phagocytosis. Biomaterials 2017;121:121-9.

16. Jaiswal S, Jamieson CHM, Pang WW, Park CY, Chao MP, et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 2009;138:271-85.

17. Matlung HL, Szilagyi K, Barclay NA, van den Berg TK. The CD47-SIRPα signaling axis as an innate immune checkpoint in cancer. Immunol Rev 2017;276:145-64.

18. Soto-Pantoja DR, Terabe M, Ghosh A, Ridnour LA, DeGraff WG, et al. Cd47 in the tumor microenvironment limits cooperation between antitumor t-cell immunity and radiotherapy. Cancer Res 2014;74:6771-83.

19. Kikuchi Y, Uno S, Kinoshita Y, Yoshimura Y, Iida SI, et al. Apoptosis inducing bivalent single-chain antibody fragments against CD47 showed antitumor potency for multiple myeloma. Leuk Res 2005;29:445-50.

20. Liu X, Pu Y, Cron K, Deng L, Kline J, et al. CD47 blockade triggers T cell-mediated destruction of immunogenic tumors. Nat Med 2015;21:1209-15.

21. Campbell IG, Freemont PS, Foulkes W, Trowsdale J. An ovarian tumor marker with homology to vaccinia virus contains an IgV-like region and multiple transmembrane domains. Cancer Res 1992;52:5416-20.

22. Pai S, Bamodu OA, Lin YK, Lin CS, Chu PY, et al. CD47-SIRPα signaling induces epithelial-mesenchymal transition and cancer stemness and links to a poor prognosis in patients with oral squamous cell carcinoma. Cells 2019;8:1658.

23. Li F, Lv B, Liu Y, Hua T, Han J, et al. Blocking the CD47-SIRPα axis by delivery of anti-CD47 antibody induces antitumor effects in glioma and glioma stem cells. Oncoimmunology 2018;7:e1391973.

24. Zhang H, Lu H, Xiang L, Bullen JW, Zhang C, et al. HIF-1 regulates CD47 expression in breast cancer cells to promote evasion of phagocytosis and maintenance of cancer stem cells. Proc Natl Acad Sci U S A 2015;112:E6215-23.

25. Theocharides APA, Jin L, Cheng PY, Prasolava TK, Malko A V, et al. Disruption of SIRPα signaling in macrophages eliminates human acute myeloid leukemia stem cells in xenografts. J Exp Med 2012;209:1883-99.

26. Majeti R, Chao MP, Alizadeh AA, Pang WW, Jaiswal S, et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 2009;138:286-99.

27. Chao MP, Alizadeh AA, Tang C, Myklebust JH, Varghese B, et al. Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-hodgkin lymphoma. Cell 2010;142:699-713.

28. Brightwell RM, Grzankowski KS, Lele S, Eng K, Arshad M, et al. The CD47 “don’t eat me signal” is highly expressed in human ovarian cancer. Gynecol Oncol 2016;143:393-7.

29. Chao MP, Alizadeh AA, Tang C, Jan M, Weissman-Tsukamoto R, et al. Therapeutic antibody targeting of CD47 eliminates human acute lymphoblastic leukemia. Cancer Res 2011;71:1374-84.

30. Tsao LC, Crosby EJ, Trotter TN, Agarwal P, Hwang BJ, et al. CD47 blockade augmentation of trastuzumab antitumor efficacy dependent on antibody-dependent cellular phagocytosis. JCI Insight 2019;4.

31. Johnson LDS, Banerjee S, Kruglov O, Viller NN, Horwitz SM, et al. Targeting CD47 in Sézary syndrome with SIRPaFc. Blood Adv 2019;3:1145-53.

32. Zhao XW, Van Beek EM, Schornagel K, Van Der Maaden H, Van Houdt M, et al. CD47-signal regulatory protein-α (SIRPα) interactions form a barrier for antibody-mediated tumor cell destruction. Proc Natl Acad Sci U S A 2011;108:18342-7.

33. Irandoust M, Alvarez Zarate J, Hubeek I, van Beek EM, Schornagel K, et al. Engagement of SIRPα inhibits growth and induces programmed cell death in acute myeloid leukemia cells. PLoS One 2013;8:e52143.

34. Xu JF, Pan XH, Zhang SJ, Zhao C, Qiu BS, et al. CD47 blockade inhibits tumor progression human osteosarcoma in xenograft models. Oncotarget 2015;6:23662-70.

35. Piperdi S, Roth M, Morriss N, Zinone C, Zhang W, et al. Abstract 2471: evaluation of CD47 expression and effects of CD47-SIRPα fusion protein in patients with osteosarcoma. Cancer Res. 2016;76:2471. Available from: http://cancerres.aacrjournals.org/content/76/14_Supplement/2471.abstract [Last accessed on 8 Apr 2020].

36. Herrmann D, Seitz G, Fuchs J, Armeanu-Ebinger S. Susceptibility of rhabdomyosarcoma cells to macrophage-mediated cytotoxicity. Oncoimmunology 2012;1:279-86.

37. Jeanne A, Martiny L, Dedieu S. Thrombospondin-targeting TAX2 peptide impairs tumor growth in preclinical mouse models of childhood neuroblastoma. Pediatr Res 2017;81:480-8.

38. Yang SY, Choi SA, Lee JY, Park AK, Wang KC, et al. miR-192 suppresses leptomeningeal dissemination of medulloblastoma by modulating cell proliferation and anchoring through the regulation of DHFR, integrins, and CD47. Oncotarget 2015;6:43712-30.

39. Gholamin S, Mitra SS, Feroze AH, Liu J, Kahn SA, et al. Disrupting the CD47-SIRPα anti-phagocytic axis by a humanized anti-CD47 antibody is an efficacious treatment for malignant pediatric brain tumors. Sci Transl Med 2017;9.

40. Mitra SS, Gholamin S, Volkmer JP, Feroze A, Liu J, et al. Abstract PR12: overcoming immune evasion in pediatric hematologic and solid tumor malignancies: A preclinical study using a humanized anti-CD47 antibody. Cancer Res. 2014;74:PR12. Available from: http://cancerres.aacrjournals.org/content/74/20_Supplement/PR12.abstract [Last accessed on 8 Apr 2020].

41. Dowle M, Srinivasan A. data.table: Extension of data.frame. 2019. Available from: https://CRAN.R-project.org/package=data.table [Last accessed on 13 Apr 2020].

42. Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2016.

43. Core R Team. R: A language and environment for statistical computing. Vienna, Austria: 2019.

44. Gröbner SN, Worst BC, Weischenfeldt J, Buchhalter I, Kleinheinz K, et al. The landscape of genomic alterations across childhood cancers. Nature 2018;555:321-7.

45. Stein E V, Miller TW, Ivins-O’Keefe K, Kaur S, Roberts DD. Secreted thrombospondin-1 regulates macrophage interleukin-1β production and activation through CD47. Sci Rep 2016;6:19684.

46. Veillette A, Chen J. SIRPα-CD47 immune checkpoint blockade in anticancer therapy. Trends Immunol 2018;39:173-84.

47. He Y, Bouwstra R, Wiersma VR, de Jong M, Jan Lourens H, et al. Cancer cell-expressed SLAMF7 is not required for CD47-mediated phagocytosis. Nat Commun 2019;10:533.

48. Ma D, Liu S, Lal B, Wei S, Wang S, et al. Extracellular matrix protein tenascin C increases phagocytosis mediated by CD47 loss of function in glioblastoma. Cancer Res 2019;79:2697-708.

49. Ring NG, Herndler-Brandstetter D, Weiskopf K, Shan L, Volkmer JP, et al. Anti-SIRPα antibody immunotherapy enhances neutrophil and macrophage antitumor activity. Proc Natl Acad Sci U S A 2017;114:E10578-85.

50. Hayes BH, Tsai RK, Dooling LJ, Kadu S, Lee JY, et al. Macrophages eat more after disruption of cis interactions between CD47 and the checkpoint receptor SIRPα. J Cell Sci 2020;133.

51. Yanagita T, Murata Y, Tanaka D, Motegi SI, Arai E, et al. Anti-SIRPα antibodies as a potential new tool for cancer immunotherapy. JCI Insight 2017;2:e89140.

52. Sockolosky JT, Dougan M, Ingram JR, Ho CCM, Kauke MJ, et al. Durable antitumor responses to CD47 blockade require adaptive immune stimulation. Proc Natl Acad Sci U S A 2016;113:E2646-54.

53. Weiskopf K, Ring AM, Ho CCM, Volkmer JP, Levin AM, et al. Engineered SIRPα variants as immunotherapeutic adjuvants to anticancer antibodies. Science 2013;341:88-91.

54. Casey SC, Tong L, Li Y, Do R, Walz S, et al. MYC regulates the antitumor immune response through CD47 and PD-L1. Science 2016;352:227-31.

55. Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 2017;545:495-9.

56. Schwartz AL, Nath P, Lessey-Morillon E, Ridnour L, Allgaeuer M, et al. CTLA4 and CD47 combinational therapy to extend survival in melanoma. J Clin Oncol 2017;35:e21025.

57. Lian S, Xie R, Ye Y, Xie X, Li S, et al. Simultaneous blocking of CD47 and PD-L1 increases innate and adaptive cancer immune responses and cytokine release. EBioMedicine 2019;42:281-95.

58. Ngo M, Han A, Lakatos A, Sahoo D, Hachey SJ, et al. Antibody therapy targeting CD47 and CD271 effectively suppresses melanoma metastasis in patient-derived xenografts. Cell Rep 2016;16:1701-16.

59. Weiskopf K, Jahchan NS, Schnorr PJ, Cristea S, Ring AM, et al. CD47-blocking immunotherapies stimulate macrophage-mediated destruction of small-cell lung cancer. J Clin Invest 2016;126:2610-20.

60. Zhang X, Wang Y, Fan J, Chen W, Luan J, et al. Blocking CD47 efficiently potentiated therapeutic effects of anti-angiogenic therapy in non-small cell lung cancer. J Immunother Cancer 2019;7:346.

61. Mathias MD, Sockolosky JT, Chang AYY, Liu C, Garcia KC, et al. CD47 blockade enhances therapeutic activity of TCR mimic antibodies to ultra-low density cancer epitopes through cytokine feed forward mechanisms. Blood 2016;128:4048.

62. Valentin R, Peluso MO, Lehmberg TZ, Adam A, Zhang L, et al. The fully human anti-CD47 antibody SRF231 has dual-mechanism antitumor activity against chronic lymphocytic leukemia (CLL) Cells and increases the activity of both rituximab and venetoclax. Blood 2018;132:4393.

63. Lo J, Lau EYT, Ng IOL, Lee TKW. Abstract 1911: NF-κB mediated CD47 upregulation promotes sorafenib resistance and its blockade synergizes the effect of sorafenib in hepatocellular carcinoma. Cancer Res. 2014;74:1911. Available from: http://cancerres.aacrjournals.org/content/74/19_Supplement/1911.abstract [Last accessed on 8 Apr 2020].

64. Liu X, Kwon H, Li Z, Fu YX. Is CD47 an innate immune checkpoint for tumor evasion? J Hematol Oncol 2017;10:12.

65. Wilson C, Bouchlaka M, Puro R, Capoccia B, Hiebsch R, et al. Abstract B100: AO-176, a highly differentiated humanized anti-CD47 antibody, exhibits single-agent and combination antitumor efficacy with chemotherapy and targeted antibodies. Mol Cancer Ther. 2019;18:B100. Available from: http://mct.aacrjournals.org/content/18/12_Supplement/B100.abstract [Last accessed on 8 Apr 2020].

66. Jaiswal S, Chao MP, Majeti R, Weissman IL. Macrophages as mediators of tumor immunosurveillance. Trends Immunol 2010;31:212-9.

67. Iribarren K, Buque A, Mondragon L, Xie W, Lévesque S, et al. Anticancer effects of anti-CD47 immunotherapy in vivo. Oncoimmunology 2019;8:1550619.

68. Mohanty S, Aghighi M, Yerneni K, Theruvath JL, Daldrup-Link HE. Improving the efficacy of osteosarcoma therapy: combining drugs that turn cancer cell ‘don’t eat me’ signals off and ‘eat me’ signals on. Mol Oncol 2019;13:2049-61.

69. Feliz-Mosquea YR, Christensen AA, Wilson AS, Westwood B, Varagic J, et al. Combination of anthracyclines and anti-CD47 therapy inhibit invasive breast cancer growth while preventing cardiac toxicity by regulation of autophagy. Breast Cancer Res Treat 2018;172:69-82.

70. Zhou F, Feng B, Yu H, Wang D, Wang T, et al. Tumor microenvironment-activatable prodrug vesicles for nanoenabled cancer chemoimmunotherapy combining immunogenic cell death induction and CD47 blockade. Adv Mater 2019;31:e1805888.

71. Zhu H, Leiss L, Yang N, Rygh CB, Mitra SS, et al. Surgical debulking promotes recruitment of macrophages and triggers glioblastoma phagocytosis in combination with CD47 blocking immunotherapy. Oncotarget 2017;8:12145-57.

72. Kiss B, van den Berg NS, Ertsey R, McKenna K, Mach KE, et al. CD47-targeted near-infrared photoimmunotherapy for human bladder cancer. Clin Cancer Res 2019;25:3561-71.

73. Gholamin S, Youssef OA, Rafat M, Esparza R, Kahn S, et al. Irradiation or temozolomide chemotherapy enhances anti-CD47 treatment of glioblastoma. Innate Immun 2020;26:130-7.

74. Miller TW, Soto-Pantoja DR, Schwartz AL, Sipes JM, Degraff WG, et al. CD47 receptor globally regulates metabolic pathways that control resistance to ionizing radiation. J Biol Chem 2015;290:24858-74.

75. Candas D, Zhang L, Menaa C, Fan M, Zhang Y, et al. Abstract LB-226: Dual inhibition of CD47 and HER2 to radiosensitize breast cancer cells. Cancer Res. 2017;77:LB-226. Available from: http://cancerres.aacrjournals.org/content/77/13_Supplement/LB-226.abstract [Last accessed on 8 Apr 2020].

76. Shi L, Wang X, Hu B, Wang D, Ren Z. miR-222 enhances radiosensitivity of cancer cells by inhibiting the expression of CD47. Int J Clin Exp Pathol 2019;12:4204-13.

77. Zhang X, Chen W, Fan J, Wang S, Xian Z, et al. Disrupting CD47-SIRPα axis alone or combined with autophagy depletion for the therapy of glioblastoma. Carcinogenesis 2018;39:689-99.

78. Advani R, Flinn I, Popplewell L, Forero A, Bartlett NL, et al. CD47 blockade by Hu5F9-G4 and rituximab in non-Hodgkin’s lymphoma. N Engl J Med 2018;379:1711-21.

79. Sallman DA, Donnellan WB, Asch AS, Lee DJ, Al Malki M, et al. The first-in-class anti-CD47 antibody Hu5F9-G4 is active and well tolerated alone or with azacitidine in AML and MDS patients: initial phase 1b results. Available from: https://ascopubs.org/doi/abs/10.1200/JCO.2019.37.15_suppl.7009 [Last accessed on 13 Apr 2020].

80. Piccione EC, Juarez S, Tseng S, Liu J, Stafford M, et al. SIRPα-antibody fusion proteins selectively bind and eliminate dual antigen-expressing tumor cells. Clin Cancer Res 2016;22:5109-19.

81. Johnson Z, Papaioannou A, Bernard L, Cosimo E, Daubeuf B, et al. Bispecific antibody targeting of CD47/CD19 to promote enhanced phagocytosis of patient B lymphoma cells. J Clin Oncol 2015;33:e14016.

82. Masternak K, Chauchet X, Buatois V, Salgado-Pires S, Shang L, et al. Abstract B37: NI-1701, a bispecific antibody for selective neutralization of CD47 in B cell malignancies. Cancer Immunol Res. 2017;5:B37. Available from: http://cancerimmunolres.aacrjournals.org/content/5/3_Supplement/B37.abstract [Last accessed on 8 Apr 2020].

83. Piccione EC, Juarez S, Liu J, Tseng S, Ryan CE, et al. A bispecific antibody targeting CD47 and CD20 selectively binds and eliminates dual antigen expressing lymphoma cells. MAbs 2015;7:946-56.

84. Boyd-Kirkup J, Thakkar D, Brauer P, Zhou J, Chng WJ, et al. HMBD004, a novel anti-CD47xCD33 Bispecific antibody displays potent anti-tumor effects in pre-clinical models of AML. Blood 2017;130:1378.

85. Tahk S, Schmitt S, Augsberger CP, Vick B, Pascual Ponce L, et al. Evaluation of a bifunctional sirpα-CD123 fusion antibody for the elimination of acute myeloid leukemia stem cells. Blood 2019;134:2544.

86. de Silva S, Fromm G, Shuptrine CW, Johannes K, Patel A, et al. CD40 enhances type i interferon responses downstream of CD47 blockade, bridging innate and adaptive immunity. Cancer Immunol Res 2019;8:230-45.

87. Shang L, Buatois V, Hatterer E, Chauchet X, Haddouk H, et al. Abstract 546: Selectively targeting CD47 with bispecific antibody to efficiently eliminate mesothelin-positive solid tumors. Cancer Res. 2019;79:546. Available from: http://cancerres.aacrjournals.org/content/79/13_Supplement/546.abstract [Last accessed on 8 Apr 2020].

88. Cabrales P. RRx-001 acts as a dual small molecule checkpoint inhibitor by downregulating CD47 on cancer cells and SIRP-α on monocytes/macrophages. Transl Oncol 2019;12:626-32.

89. Ramesh A, Kumar S, Nguyen A, Brouillard A, Kulkarni A. Lipid-based phagocytosis nanoenhancer for macrophage immunotherapy. Nanoscale 2020;12:1875-85.

90. Eskiocak U, Guzman W, Daly T, Nelson A, Bakhru P, et al. Abstract 3239: CTX-5861 mediated SIRPα blockade combines with tumor targeting antibodies, checkpoint blockade and/or CD137 agonism to elicit curative anti-tumor activity in syngeneic mouse models. Cancer Res. 2019;79:3239. Available from: http://cancerres.aacrjournals.org/content/79/13_Supplement/3239.abstract [Last accessed on 8 Apr 2020].

91. Wang Z, Cao W, Guo T, Zang J. Abstract 5622: A novel immunocytokine fusion protein combining tumor-targeting anti-CD47 antibody with GM-CSF cytokine for enhanced antitumor efficacy. Cancer Res. 2018;78:5622. Available from: http://cancerres.aacrjournals.org/content/78/13_Supplement/5622.abstract [Last accessed on 8 Apr 2020].

92. Ma L, Zhu M, Gai J, Li G, Chang Q, et al. Preclinical development of a novel CD47 nanobody with less toxicity and enhanced anti-cancer therapeutic potential. J Nanobiotechnology 2020;18:12.

93. Xie YJ, Dougan M, Ingram JR, Pishesha N, Fang T, et al. Improved anti-tumor efficacy of chimeric antigen receptor T cells that secrete single-domain antibody fragments. Cancer Immunol Res 2020;8:518-29.

94. Puro RJ, Bouchlaka MN, Hiebsch RR, Capoccia BJ, Donio MJ, et al. Development of AO-176, a next generation humanized anti-CD47 antibody with novel anti-cancer properties and negligible red blood cell binding. Mol Cancer Ther 2020;19:835-46.

95. Huang Y, Lv S, Liu P, Ye Z, Yang H, et al. A SIRPα-Fc fusion protein enhances the antitumor effect of oncolytic adenovirus against ovarian cancer. Mol Oncol 2020;14:657-68.

96. Li Y, Zhang M, Wang X, Liu W, Wang H, et al. Vaccination with CD47 deficient tumor cells elicits an antitumor immune response in mice. Nat Commun 2020;11:581.

Cancer Drug Resistance
ISSN 2578-532X (Online)

Portico

All published articles will preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles will preserved here permanently:

https://www.portico.org/publishers/oae/