REFERENCES
2. Hu D, Shilatifard A. Epigenetics of hematopoiesis and hematological malignancies. Genes Dev 2016;30:2021-41.
3. Fleming D. Leukemia: understanding it’s types and treatments. Oncol Nurs Advisor 2012:15-20.
4. Smeltzer SC, Bare BG, Hinkle JL, Cheever K H. Textbook of medical surgical nursing. 11th edition. Philadelphia: Lippincott Williams & Wilkins; 2008. pp. 410-22.
5. “Types of Leukemia.” What You Need To Know About Leukemia. National Cancer Institute, 3 Dec. 2013. Web. 24 Apr. 2014. Available from: https://www.cancer.gov/types/leukemia/hp. [Last accessed on 16 Dec 2019].
6. Bain BJ. Leukaemia Diagnosis. Oxford: John Wiley & Sons; 2010. pp. 1-63.
7. Ciesla B. Hematology in Practice. Philadelphia: F.A. Davis Co; 2007. pp. 167-202.
8. Ball ED. 100 Questions & Answers about Leukemia. Sudbury: Jones & Bartlett Publishers; 2002. pp. 1-34.
9. Bain B. Leukaemia diagnosis. Third edition. Oxford: John Wiley & Sons; 2003. pp. 57-143.
10. Bain B. Blood Cells: A Practical Guide. Fourth edition. Chichester: Published by WileyBlackwell; 2006. pp. 416-80.
11. Norman B. Diagnostic Hematology. 1st edition. London: Springer; 2009. pp. 9-79.
12. Foran JM, Shammo JM. Clinical presentation, diagnosis, and prognosis of myelodysplastic syndromes. Am J Med 2012;125 (7 Suppl):S6-13.
13. Barzi A, Sekeres MA. Myelodysplastic syndromes: a practical approach to diagnosis and treatment. Cleve Clin J Med 2010;77:37-44.
14. Sharma SK, Gupta S, Seth T, Mishra P, Mahapatra M, et al. Leukemia cutis: an unusual presentation. Indian J Hematol Blood Transfus 2012;28:175-7.
16. Juliusson G, Antunovic P, Derolf A, Lehmann S, Möllgård L, et al. Age and acute myeloid leukemia: real world data on decision to treat and outcomes from the Swedish Acute Leukemia Registry. Blood 2009;113:4179-87.
17. Juliusson G, Lazarevic V, Hörstedt AS, Hagberg O, Höglund M; Swedish Acute Leukemia Registry Group. Acute myeloid leukemia in the real world: why population based registries are needed. Blood 2012;119:3890-9.
18. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol 1976;33:451-8.
20. Grimwade D, Hills RK, Moorman AV, Walker H, Chatters S, et al; National Cancer Research Institute Adult Leukaemia Working Group. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood 2010;116:354-65.
21. Estey EH. Acute myeloid leukemia: 2012 update on diagnosis, risk stratification, and management. Am J Hematol 2012;87:89-99.
22. Höglund M, Sandin F, Simonsson B. Epidemiology of chronic myeloid leukaemia: an update. Ann Hematol 2015;94:S241-7.
23. Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2018 update on diagnosis, therapy and monitoring. Am J Hematol 2018;93:442-59.
24. Deininger MW, Goldman JM, Melo JV. The molecular biology of chronic myeloid leukemia. Blood 2000;96:3343-56.
25. Lugo TG, Pendergast AM, Muller AJ, Witte ON. Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science 1990;247:1079-82.
26. Faderl S, Talpaz M, Estrov Z, O’Brien S, Kurzrock R, et al. The biology of chronic myeloid leukemia. N Engl J Med 1999;341:164-72.
29. Baccarani M, Castagnetti F, Gugliotta G, Palandri F, Rosti G. Treatment - recommendations for chronic myeloid leukemia. Mediterr J Hematol Infect Dis 2014;6:e2014005.
30. Fefer A, Cheever MA, Thomas ED, Boyd C, Ramberg R, et al. Disappearance of Ph1-positive cells in four patients with chronic granulocytic leukemia after chemotherapy, irradiation and marrow transplantation from an identical twin. N Engl J Med 1979;300:333-7.
31. Goldman JM, Baughan AS, McCarthy DM, Worsley AM, Hows JM, et al. Marrow transplantation for patients in the chronic phase of chronic granulocytic leukaemia. Lancet 1982;2:623-5.
32. Speck B, Bortin MM, Champlin R, Goldman JM, Herzig RH, et al. Allogeneic bone-marrow transplantation for chronic myelogenous leukaemia. Lancet 1984;1:665-8.
33. Talpaz M, McCredie KB, Mavligit GM, Gutterman JU. Leukocyte interferon-induced myeloid cytoreduction in chronic myelogenous leukemia. Blood 1983;62:689-92.
34. Hochhaus A, O’Brien SG, Guilhot F, Druker BJ, Branford S, et al. Six-year follow-up of patients receiving imatinib for the first-line treatment of chronic myeloid leukemia. Leukemia 2009;23:1054-61.
35. Druker BJ, Guilhot F, O’Brien SG, Gathmann I, Kantarjian H, et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 2006;355:2408-17.
36. Cortes J, Kantarjia H. Chronic myeloid leukemia: sequencing of TKI therapies. Hematology Am Soc Hematol Educ Program 2016;2016:164-9.
37. Neukirchen J, Schoonen WM, Strupp C, Gattermann N, Aul C, et al. Incidence and prevalence of myelodysplastic syndromes: data from the Düsseldorf MDS-registry. Leuk Res 2011;35:1591-6.
38. Williamson PJ, Kruger AR, Reynolds PJ, Hamblin TJ, Oscier DG. Establishing the incidence of myelodysplastic syndrome. Br J Haematol 1994;87:743-5.
39. Kuendgen A, Strupp C, Aivado M, Hildebrandt B, Haas R, et al. Myelodysplastic syndromes in patients younger than age 50. J Clin Oncol 2006;24:5358-65.
40. Geyh S, Oz S, Cadeddu RP, Fröbel J, Brückner B, et al. Insufficient stromal support in MDS results from molecular and functional deficits of mesenchymal stromal cells. Leukemia 2013;27:1841-51.
41. Germing U, Gattermann N, Strupp C, Aivado M, Hossfeld DK, et al. Myelodysplastische syndrome: neue WHO-klassifikation und aspekte zur pathogenese, prognose and therapie. Dtsch Arztebl 2001;98:A2272-8.
42. Germing U, Aul C, Niemeyer CM, Haas R, Bennett JM. Epidemiology, classification and prognosis of adults and children with myelodysplastic syndromes. Ann Hematol 2008;87:691-9.
43. Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 1997;89:2079-88.
44. Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood 2012;120:2454-65.
45. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016;127:2391-405.
46. Diamantis A, Magiorkinis E, Koutselini H. Fine-needle aspiration (FNA) biopsy: historical aspects. Folia Histochem. Cytobiol 2009;47:191-7.
47. Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A. Liquid biopsy: monitoring cancergenetics in the blood. Nat Rev Clin Oncol 2013;10:472-84.
49. Siravegna G, Marsoni S, Siena S, Bardelli A. Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol 2017;14:531-48.
50. Kubaczkova V, Vrabel D, Sedlarikova L, Besse L, Sevcikova S. Cell- free DNA - Minimally invasive marker of hematological malignancies. Eur J Haematol 2017;99:291-9.
52. Rolfo C, Castiglia M, Hong D, Alessandro R, Mertens I, et al. Liquid biopsies in lung cancer: the new ambrosia of researchers. Biochim Biophys Acta 2014;1846:539-46.
53. Domínguez-Vigil I, Moreno-Martínez A, Wang J, Roehrl M, Barrera-Saldaña H. The dawn of the liquid biopsy in the fight against cancer. Oncotarget 2018;9:2912-22.
54. Bettegowda C, Sausen M, Leary R, Kinde I, Wang Y, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 2014;6:224ra24.
55. Zheng D, Ye X, Zhang MZ, Sun Y, Wang JY, et al. Plasma EGFR T790M ctDNA status is associated with clinical outcome in advanced NSCLC patients with acquired EGFR-TKI resistance. Sci Rep 2016;6:20913.
56. Novello S, Barlesi F, Califano R, Cufer T, Ekman S, et al. Metastatic non-small-cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2016;27:v1-v27.
57. Diaz LA, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol 2014;32:579-86.
58. Stroun M, Lyautey J, Lederrey C, Olson-Sand A, Anker P. About the possible origin and mechanism of circulating DNA apoptosis and active DNA release. Clin Chim Acta 2001;313:139-42.
59. Jahr S, Hentze H, Englisch S, Hardt D, Fackelmayer FO, et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 2001;61:1659-65.
60. Mouliere F, Robert B, Arnau Peyrotte E, Del Rio M, Ychou M, et al. High fragmentation characterizes tumour-derived circulating DNA. PLoS One 2011;6:e23418.
61. Bergsmedh A, Szeles A, Henriksson M, Bratt A, Folkman MJ, et al. Horizontal transfer of oncogenes by uptake of apoptotic bodies. Proc Natl Acad Sci U S A 2001;98:6407-11.
62. Underhill HR, Kitzman JO, Hellwig S, Welker NC, Daza R, et al. Fragment length of circulating tumor DNA. PLoS Genet 2016;12:e1006162.
63. Cheng F, Su L, Qian C. Circulating tumor DNA: a promising biomarker in the liquid biopsy of cancer. Oncotarget 2016;7:48832-41.
64. Li J, Dittmar RL, Xia S, Zhang H, Du M, et al. Cell-free DNA copy number variations in plasma from colorectal cancer patients. Mol Oncol 2017;11:1099-111.
65. Soave A, Chun FK, Hillebrand T, Rink M, Weisbach L, et al. Copy number variations of circulating, cell-free DNA in urothelial carcinoma of the bladder patients treated with radical cystectomy: a prospective study. Oncotarget 2017;8:56398-407.
66. Husain H, Nykin D, Bui N, Quan D, Gomez G, et al. Cell-free DNA from ascites and pleural effusions: molecular insights into genomic aberrations and disease biology. Mol Cancer Ther 2017;16:948-55.
67. Li Z, Guo X, Tang L, Peng L, Chen M, et al. Methylation analysis of plasma cell-free DNA for breast cancer early detection using bisulfite next-generation sequencing. Tumour Biol 2016;37:13111-9.
68. Fleischhacker M, Schmidt B. Circulating nucleic acids (CNAs) and cancer-A survey. Biochim Biophys Acta 2007;1775:181-232.
69. Siravegna G, Bardelli A. Genotyping cell-free tumor DNA in the blood to detect residual disease and drug resistance. Genome Biol 2014;15:449.
70. Schwarzenbach H, Hoon DS, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 2011;11:426-37.
71. Chan KC, Yeung SW, Lui WB, Rainer TH, Lo YM. Effects of preanalytical factors on the molecular size of cell-free DNA in blood. Clin Chem 2005;51:781-4.
72. Su YH, Wang M, Aiamkitsumrit B, Brenner DE, Block TM. Detection of a K-ras mutation in urine of patients with colorectal cancer. Cancer Biomark 2005;1:177-82.
73. Wang Y, Springer S, Mulvey CL, Silliman N, Schaefer J, et al. Detection of somatic mutations and HPV in the saliva and plasma of patients with head and neck squamous cell carcinomas. Sci Transl Med 2015;7:293ra104.
74. De Mattos-Arruda L, Mayor R, Ng CK, Weigelt B, Martínez-Ricarte F, et al. Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma. Nat Commun 2015;6:8839.
75. Barra GB, Santa Rita TH, de Almeida Vasques J, Chianca CF, Nery LF, et al. EDTA-mediated inhibition of DNases protects circulating cell-free DNA from ex vivo degradation in blood samples. Clin Biochem 2015;48:976-81.
76. EI Messaoudi S, Rolet F, Mouliere F, Thierry AR. Circulating cell free DNA: preanalytical considerations. Clin Chim Acta 2013;424:222-30.
77. Parpart-Li S, Bartlett B, Popoli M, Adleff V, Tucker L, et al. The effect of preservative and temperature on the analysis of circulating tumor DNA. Clin Cancer Res 2017;23:2471-7.
78. Mandel P, Metais P. Les acides nucléiques du plasma sanguin chez l’homme. C R Seances Soc Biol Fil 1948;142:241-3. (in French)
79. Leon SA, Shapiro B, Sklaroff DM, Yaros MJ. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 1977;37:646-50.
80. Vasioukhin V, Anker P, Maurice P, Lyautey J, Lederrey C, et al. Point mutations of the N- ras gene in the blood plasma DNA of patients with myelodysplastic syndrome or acute myelogenous leukaemia. Br J Haematol 1994;86:774-9.
81. Osborne CM, Hardisty E, Devers P, Kaiser-Rogers K, Hayden MA, et al. Discordant noninvasive prenatal testing results in a patient subsequently diagnosed with metastatic disease. Prenat Diagn 2013;33:609-11.
83. Heitzer E, Ulz P, Geigl JB. Circulating tumor DNA as a liquid biopsy for cancer. Clin Chem 2015;61:112-23.
84. Marzese DM, Hirose H, Hoon DSB. Diagnostic and prognostic value of circulating tumor-related DNA in cancer patients. Expert Rev Mol Diagn 2013;13:827-44.
85. Han X, Wang J, Sun Y. Circulating tumor DNA as biomarkers for cancer detection. Genomics Proteomics Bioinformatics 2017;15:59-72.
86. Martinez-Galan J, Torres-Torres B, Nunez L-PJ, Del Moral R, Ruiz De Almodovar J, et al. ESR1 gene promoter region methylation in free circulating DNA and its correlation with estrogen receptor protein expression in tumor tissue in breast cancer patients. BMC Cancer 2014;14:59.
87. Church TR, Wandell M, Lofton-Day C, Mongin SJ, Burger M, et al. Prospective evaluation of methylated SEPT9 in plasma for detection of asymptomatic colorectal cancer. Gut 2014;63:317-25.
88. Cohen JD, Li L, Wang Y, Thoburn C, Afsari B, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 2018;359:926-30.
89. Stevenson K, Lawrence MS, Sougnez C, Stewart C, Sivachenko A, et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 2013;152:714-26.
90. Abbosh C, Birkbak NJ, Wilson GA, Jamal-Hanjani M, Constantin T, et al. Phylogenetic ctDNA analysis depicts early stage lung cancer evolution. Nature 2017;545:446-51.
91. Imamura T, Komatsu S, Ichikawa D, Kawaguchi T, Miyamae M, et al. Liquid biopsy in patients with pancreatic cancer: circulating tumor cells and cell-free nucleic acids. World J Gastroenterol 2016;22:5627-41.
92. Morgan CD. Observations on cancer: its pathology, and its relations to the organism and to other morbid growths. Lancet 1874;103:325-9.
93. Ashworth T. A case of cancer in which cells similar to those in the tumors were seen in the blood after death. Aust Med J 1869;14:146-7.
94. Parkinson DR, Dracopoli N, Petty BG, Compton C, Cristofanilli M, et al. Considerations in the development of circulating tumor cell technology for clinical use. J Transl Med 2012;10:138.
95. Young R, Pailler E, Billiot F, Drusch F, Barthelemy A, et al. Circulating tumor cells in lung cancer. Acta Cytol 2012;56:655-60.
96. Krebs MG, Metcalf RL, Carter L, Brady G, Blackhall FH, et al. Molecular analysis of circulating tumour cellsbiology and biomarkers. Nat Rev Clin Oncol 2014;11:129-44.
97. Lianidou ES, Strati A, Markou A. Circulating tumor cells as promising novel biomarkers in solid cancers. Crit Rev Clin Lab Sci 2014;51:160-71.
98. De Wit S, van Dalum G, Terstappen LW. Detection of circulating tumor cells. Scientifica 2014;2014:819362.
99. Hayes DF, Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, et al. Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin Cancer Res 2006;12:4218-24.
100. Alix-Panabières C, Pantel K. Circulating tumor cells: liquid biopsy of cancer. Clin Chem 2013;59:110-8.
101. Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 2007;450:1235-9.
102. Marrugo-Ramírez J, Mir M, Samitier J. Blood-based cancer biomarkers in liquid biopsy: a promising non-invasive alternative to tissue biopsy. Int J Mol Sci 2018;19:2877.
103. Ozkumur E, Shah AM, Ciciliano JC, Emmink BL, Miyamoto DT, et al. Inertial focusing for tumor antigen-dependent and-independent sorting of rare circulating tumor cells. Sci Transl Med 2013;5:179ra47.
104. Lianidou ES. Gene expression profiling and DNA methylation analyses of CTCs. Mol Oncol 2016;10:431-42.
105. Lianidou ES, Markou A. Molecular assays for the detection and characterization of CTCs. Recent Results Cancer Res 2012;195:111-23.
106. Markou A, Lazaridou M, Paraskevopoulos P, Chen S, Świerczewska M, et al. Multiplex gene expression profiling of in vivo isolated circulating tumor cells in high risk prostate cancer patients. Clin Chem 2018;64:297-306.
107. Strati A, Koutsodontis G, Papaxoinis G, Angelidis I, Zavridou M, et al. Prognostic significance of PD-L1 expression on circulating tumor cells in patients with head and neck squamous cell carcinoma. Ann Oncol 2017;28:1923-33.
108. Keup C, Mach P, Aktas B, Tewes M, Kolberg HC, et al. RNA profiles of circulating tumor cells and extracellular vesicles for therapy stratification of metastatic breast cancer patients. Clin Chem 2018;64:1054-62.
109. König L, Kasimir-Bauer S, Bittner A-K, Hoffmann O, Wagner B, et al. Elevated levels of extracellular vesicles are associated with therapy failure and disease progression in breast cancer patients undergoing neoadjuvant chemotherapy. Oncoimmunology 2017;7:e1376153.
110. Bredemeier M, Edimiris P, Mach P, Kubista M, Sjöback R, et al. Gene expression signatures in circulating tumor cells correlate with response to therapy in metastatic breast cancer. Clin Chem 2017;63:1585-93.
111. Chebouti I, Kasimir-Bauer S, Buderath P, Wimberger P, Hauch S, et al. EMT-like circulating tumor cells in ovarian cancer patients are enriched by platinum-based chemotherapy. Oncotarget 2017;8:48820-31.
112. Reijm EA, Sieuwerts AM, Smid M, Vries JB, Mostert B, et al. An 8-gene mRNA expression profile in circulating tumor cells predicts response to aromatase inhibitors in metastatic breast cancer patients. BMC Cancer 2016;16:123.
113. Gorges TM, Kuske A, Röck K, Mauermann O, Müller V, et al. Accession of tumor heterogeneity by multiplex transcriptome profiling of single circulating tumor cells. Clin Chem 2016;62:1504-15.
114. Markou A, Zavridou M, Sourvinou I, Yousef G, Kounelis S, et al. Direct comparison of metastasis-related miRNAs expression levels in circulating tumor cells, corresponding plasma, and primary tumors of breast cancer patients. Clin Chem 2016;62:1002-11.
115. Sieuwerts AM, Kraan J, Bolt-de Vries J, van der Spoel P, Mostert B, et al. Molecular characterization of circulating tumor cells in large quantities of contaminating leukocytes by a multiplex real-time PCR. Breast Cancer Res Treat 2009;118:455-68.
116. Frontela Noda M. MicroRNAs in cancer: from research to clinical practice. Rev Cubana Med 2012;51:325-35. (in Spanish)
117. Etheridge A, Lee I, Hood L, Galas D, Wang K. Extracellular microRNA: a new source of biomarkers. Mutat Res 2011;717:85-90.
118. Resnick KE, Alder H, Hagan JP, Richardson DL, Croce CM, et al. The detection of differentially expressed microRNAs from the serum of ovarian cancer patients using a novel real-time PCR platform. Gynecol Oncol 2009;112:55-9.
119. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 2002;99:15524-9.
120. Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, et al. A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 2005;353:1793-801.
121. Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 2009;10:704-14.
122. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 2004;64:3753-6.
123. Kasinski AL, Slack FJ. Epigenetics and genetics. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer 2011;11:849-64.
124. Weber JA, Baxter DH, Zhang SL, Huang DY, Huang KH, et al. The MicroRNA spectrum in 12 body fluids. Clin Chem 2010;56:1733-41.
125. Wang K, Yuan Y, Cho JH, McClarty S, Baxter D, et al. Comparing the MicroRNA spectrum between serum and plasma. PloS One 2012;7:e41561.
127. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 2008;105:10513-8.
128. Chen X, Ba Y, Ma L, Cai X, Yin Y, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 2008;18:997-1006.
129. Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 2008;9:102-14.
130. Ichikawa D, Komatsu S, Konishi H, Otsuji E. Circulating microRNA in digestive tract cancers. Gastroenterology 2012;142:1074-8.e1071.
131. Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA 2011;108:5003-8.
132. Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 2011;13:423-33.
133. Kosaka N, Iguchi H, Ochiya T. Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci 2010;101:2087-92.
134. Hasselmann DO, Rappl G, Tilgen W, Reinhold U. Extracellular tyrosinase mRNA within apoptotic bodies is protected from degradation in human serum. Clin Chem 2001;47:1488-9.
135. Cocucci E, Racchetti G, Meldolesi J. Shedding microvesicles: artefacts no more. Trends Cell Biol 2009;19:43-51.
136. Antolin S, Calvo L, Blanco-Calvo M, Santiago MP, Lorenzo-Patino MJ, et al. Circulating miR-200c and miR-141 and outcomes in patients with breast cancer. BMC Cancer 2015;15:297.
137. Zanutto S, Pizzamiglio S, Ghilotti M, Bertan C, Ravagnani F, et al. Circulating miR-378 in plasma: a reliable, haemolysis-independent biomarker for colorectal cancer. Br J Cancer 2014;110:1001-7.
138. Zhang J, Song Y, Zhang C, Zhi X, Fu H, et al. Circulating MiR16-5p and MiR-19b-3p as two novel potential biomarkers to indicate progression of gastric cancer. Theranostics 2015;5:733-45.
139. Zhao Y, Song Y, Yao L, Song G, Teng C. Circulating microRNAs: promising biomarkers involved in several cancers and other diseases. DNA Cell Biol 2017;36:77-94.
140. Kawaguchi T, Komatsu S, Ichikawa D, Morimura R, Tsujiura M, et al. Clinical impact of circulating miR-221 in plasma of patients with pancreatic cancer. Br J Cancer 2013;108:361-9.
141. Mirzaei HR, Sahebkar A, Mohammadi M, Yari R, Salehi H, et al. Circulating microRNAs in hepatocellular carcinoma: potential diagnostic and prognostic biomarkers. Curr Pharm Des 2016;22:5257-69.
142. Caivano A, La Rocca F, Simeon V, Girasole M, Dinarelli S, et al. MicroRNA-155 in serum-derived extracellular vesicles as a potential biomarker for hematologic malignancies - a short report. Cell Oncol (Dordr) 2017;40:97-103.
143. Ono S, Lam S, Nagahara M, Hoon DS. Circulating microRNA biomarkers as liquid biopsy for cancer patients: pros and cons of current assays. J Clin Med 2015;4:1890-907.
144. Mashouri L, Yousefi H, Aref AR, Ahadi AM, Molaei F, et al. Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer 2019;18:75.
145. Simpson RJ, Lim JWE, Moritz RL, Mathivanan S. Exosomes: proteomic insights and diagnostic potential. Expert Rev Proteom 2009;6:267-83.
146. Roma-Rodrigues C, Fernandes AR, Baptista PV. Exosome in tumour microenvironment: overview of the crosstalk between normal and cancer cells. Biomed Res Int 2014;2014:179486.
147. Spugnini EP, Logozzi M, Di Raimo R, Mizzoni D, Fais S. A role of tumor-released exosomes in paracrine dissemination and metastasis. Int J Mol Sci 2018;19:E3968.
148. Yousafzai NA, Wang H, Wang Z, Zhu Y, Zhu L, et al. Exosome mediated multidrug resistance in cancer. Am J Cancer Res 2018;8:2210-26.
149. Li I, Nabet BY. Exosomes in the tumor microenvironment as mediators of cancer therapy resistance. Mol Cancer 2019;18:32.
150. Guo Y, Ji X, Liu J, Fan D, Zhou Q, et al. Effects of exosomes on pre-metastatic niche formation in tumors. Mol Cancer 2019;18:39.
151. Qiao F, Pan P, Yan J, Sun J, Zong Y, et al. Role of tumor-derived extracellular vesicles in cancer progression and their clinical applications (Review). Int J Oncol 2019;54:1525-33.
152. Roma-Rodrigues C, Mendes R, Baptista PV, Fernandes AR. Targeting tumor microenvironment for cancer therapy. Int J Mol Sci 2019;20:E840.
153. Logozzi M, Spugnini E, Mizzoni D, Di Raimo R, Fais S. Extracellular acidity and increased exosome release as key phenotypes of malignant tumors. Cancer Metastasis Rev 2019;38:93-101.
154. Weston WW, Ganey T, Temple HT. The relationship between exosomes and cancer: implications for diagnostics and therapeutics. BioDrugs 2019;33:137-58.
155. Aghebati-Maleki A, Nami S, Baghbanzadeh A, Karzar BH, Noorolyai S, et al. Implications of exosomes as diagnostic and therapeutic strategies in cancer. J Cell Physiol 2019;234:21694-706.
156. Bellassai N, D’Agata R, Jungbluth V, Spoto G. Surface plasmon resonance for biomarker detection: advances in non-invasive cancer diagnosis. Front Chem 2019;7:570.
157. Dorayappan KDP, Gardner ML, Hisey CL, Zingarelli RA1, Smith BQ, et al. A microfluidic chip enables isolation of exosomes and establishment of their protein profiles and associated signaling pathways in ovarian cancer. Cancer Res 2019;79:3503-13.
158. Li P, Yu X, Han W, Kong Y, Bao W, et al. Ultrasensitive and reversible nanoplatform of urinary exosomes for prostate cancer diagnosis. ACS Sens 2019;4:1433-41.
159. Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 2008;10:13-21.
160. Meng X, Muller V, Milde-Langosch K, Trillsch F, Pantel K H, et al. Diagnostic and prognostic relevance of circulating exosomal miR-373, miR-200a, miR-200b and miR-200c in patients with epithelial ovarian cancer. Oncotarget 2016;7:16923-35.
161. Giannopoulou L, Zavridou M, Kasimir-Bauer S, Lianidou ES. Liquid biopsy in ovarian cancer: the potential of circulating miRNAs and exosomes. Transl Res 2019;205:77-91.
162. Li Y, Zhang Y, Qiu F, Qiu Z. Proteomic identification of exosomal LRG1: a potential urinary biomarker for detecting NSCLC. Electrophoresis 2011;32:1976-83.
163. Weber DG, Johnen G, Casjens S, Bryk O, Pesch B, et al. Evaluation of long noncoding RNA MALAT1 as a candidate blood-based biomarker for the diagnosis of non-small cell lung cancer. BMC Res Notes 2013;6:518.
164. Liu S, Zhan Y, Luo J, Feng J, Lu J, et al. Roles of exosomes in the carcinogenesis and clinical therapy of non-small cell lung cancer. Biomed Pharmacother 2019;111:338-46.
165. Ogata-Kawata H, Izumiya M, Kurioka D, Honma Y, Yamada Y, et al. Circulating exosomal microRNAs as biomarkers of colon cancer. PLoS One 2014;9:e92921.
166. Mousavi S, Moallem R, Hassanian SM, Sadeghzade M, Mardani R, et al. Tumor-derived exosomes: potential biomarkers and therapeutic target in the treatment of colorectal cancer. J Cell Physiol 2019;234:12422-32.
167. Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST, et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 2015;523:177-82.
168. Zhou B, Xu JW, Cheng YG, Gao JY, Hu SY, et al. Early detection of pancreatic cancer: where are we now and where are we going? Int J Cancer 2017;141:231-41.
169. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 2005;438:820-7.
170. Kaplan RN, Psaila B, Lyden D. Bone marrow cells in the ‘pre-metastatic niche’: within bone and beyond. Cancer Metastasis Rev 2006;25:521-9.
171. Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, et al. Tumour exosome integrins determine organotropic metastasis. Nature 2015;527:329-35.
172. Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H, et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol 2015;17:816-26.
173. Peinado H, Zhang H, Matei IR, Costa-Silva B, Hoshino A, et al. Pre-metastatic niches: organ-specific homes for metastases. Nat Rev Cancer 2017;17:302-17.
174. Li J, Tian T, Zhou X. The role of exosomal shuttle RNA (esRNA) in lymphoma. Crit Rev Oncol Hematol 2019;137:27-34.
175. Yang C, Yang H, Liu J, Zhu L, Yu S, et al. Focus on exosomes: novel pathogenic components of leukemia. Am J Cancer Res 2019;9:1815-29.
176. Umezu T, Ohyashiki K, Kuroda M, Ohyashiki JH. Leukemia cell to endothelial cell communication via exosomal miRNAs. Oncogene 2013;32:2747-55.
177. Tadokoro H, Umezu T, Ohyashiki K, Hirano T, Ohyashiki JH. Exosomes derived from hypoxic leukemia cells enhance tube formation in endothelial cells. J Biol Chem 2013;288:34343-51.
178. Mineo M, Garfield SH, Taverna S, Flugy A, De Leo G, et al. Exosomes released by K562 chronic myeloid leukemia cells promote angiogenesis in a Src-dependent fashion. Angiogenesis 2012;15:33-45.
179. Taverna S, Amodeo V, Saieva L, Russo A, Giallombardo M, et al. Exosomal shuttling of miR-126 in endothelial cells modulates adhesive and migratory abilities of chronic myelogenous leukemia cells. Mol Cancer 2014;13:169.
180. Taverna S, Flugy A, Saieva L, Kohn EC, Santoro A, et al. Role of exosomes released by chronic myelogenous leukemia cells in angiogenesis. Int J Cancer 2012;130:2033-43.
181. Korkolopoulou P, Viniou N, Kavantzas N, Patsouris E, Thymara I, et al. Clinicopathologic correlations of bone marrow angiogenesis in chronic myeloid leukemia: a morphometric study. Leukemia 2003;17:89-97.
182. Vinhas R, Mendes R, Fernandes AR, Baptista PV. Nanoparticles - emerging potential for managing leukemia and lymphoma. Front Bioeng Biotechnol 2017;5:79.
183. Rogers A, Joe Y, Manshouri T, Dey A, Jilani I, et al. Relative increase in leukemia-specific DNA in peripheral blood plasma from patients with acute myeloid leukemia and myelodysplasia. Blood 2004;103:2799-801.
184. Mouliere F, EI Messaoudi S, Pang D, Dritschilo A, Thierry AR. Multi- marker analysis of circulating cell- free DNA toward personalized medicine for colorectal cancer. Mol Oncol 2014;8:927-41.
185. Gao YJ, He YJ, Yang ZL, Shao HY, Zuo Y, et al. Increased integrity of circulating cell- free DNA in plasma of patients with acute leukemia. Clin Chem Lab Med 2010;48:1651-6.
186. Hocking J, Mithraprabhu S, Kalff A, Spencer A. Liquid biopsies for liquid tumors: emerging potential of circulating free nucleic acid evaluation for the management of hematologic malignancies. Cancer Biol Med 2016;13:215-25.
187. Koutova L, Sterbova M, Pazourkova E, Pospisilova S, Svobodova I, et al. The impact of standard chemotherapy on miRNA signature in plasma in AML patients. Leuk Res 2015;39:1389-95.
188. Cornelissen JJ, Gratwohl A, Schlenk RF, Sierra J, Bornhäuser M, et al. The European LeukemiaNet AML working party consensus statement on allogeneic HSCT for patients with AML in remission: an integrated-risk adapted approach. Nat Rev Clin Oncol 2012;9:579-90.
189. Quan J, Gao Y, Yang Z, Chen H, Xian JR, et al. Quantitative detection of circulating nucleophosmin mutations DNA in the plasma of patients with acute myeloid leukemia. Int J Med Sci 2015;12:17-22.
190. Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med 2005;352:254-66.
191. Nakamura S, Yokoyama K, Shimizu E, Yusa N, Kondoh K, et al. Prognostic impact of circulating tumor DNA status post-allogeneic hematopoietic stem cell transplantation in AML and MDS. Blood 2019;133:2682-95.
192. Iriyama C, Tomita A, Hoshino H, Adachi-Shirahata M, Furukawa-Hibi Y, et al. Using peripheral blood circulating DNAs to detect CpG global methylation status and genetic mutations in patients with myelodysplastic syndrome. Biochem Biophys Res Commun 2012;419:662-9.
193. Suzuki Y, Tomita A, Nakamura F, Iriyama C, Shirahata-Adachi M, et al. Peripheral blood cell- free DNA is an alternative tumor DNA source reflecting disease status in myelodysplastic syndromes. Cancer Sci 2016;107:1329-37.
194. Yeh P, Dickinson M, Ftouni S, Hunter T, Sinha D, et al. Molecular disease monitoring using circulating tumor DNA in myelodysplastic syndromes. Blood 2017;129:1685-90.
195. Corrado C, Saieva L, Raimondo S, Santoro A, De Leo G, et al. Chronic myelogenous leukemia exosomes modulate bone marrow microenvironment through activation of epidermal growth factor receptor. J Cell Mol Med 2016;20:1829-39.
196. Raimondo S, Saieva L, Corrado C, Fontana S, Flugy A, et al. Chronic myeloid leukemiaderived exosomes promote tumor growth through an autocrine mechanism. Cell Commun Signal 2015;13:8.
197. Heidary M, Auer M, Ulz P, Heitzer E, Petru E, et al. The dynamic range of circulating tumor DNA in metastatic breast cancer. Breast Cancer Res 2014;16:421.
198. Ulz P, Auer M, Heitzer E. Detection of circulating tumor DNA in the blood of cancer patients: an important tool in cancer chemoprevention. Methods Mol Biol 2016;1379:45-68.
199. Van Roy N, Van der Linden M, Menten B, Dheedene A, Vandeputte C, et al. Shallow whole genome sequencing on circulating cell-free DNA allows reliable non-invasive copy number profiling in neuroblastoma patients. Clin Cancer Res 2017; doi: 10.1158/1078-0432.CCR-17-0675.
200. Adalsteinsson VA, Ha G, Freeman SS, Choudhury AD, Stover DG, et al. Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors. Nat Commun 2017;8:1324.
201. Stover DG, Parsons HA, Ha G, Freeman S, Barry B, et al. Genomewide copy number analysis of chemotherapy resistant metastatic triple-negative breast cancer from cell-free DNA. J Clin Oncol 2018;78.
202. Wang J, Bettegowda C. Applications of DNA-based liquid biopsy for central nervous system neoplasms. J Mol Diagn 2017;19:24-34.
203. Ilie M, Hofman V, Long E, Bordone O, Selva E, et al. Current challenges for detection of circulating tumor cells and cell-free circulating nucleic acids, and their characterization in non-small cell lung carcinoma patients. What is the best blood substrate for personalized medicine? Ann Trans Med 2014;2:107.
204. Newman AM, Bratman SV, To J, Wynne JF, Eclov NC, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med 2014;20:548-54.
205. Molina-Vila MA, Mayo-de-las-Casas C, Giménez-Capitán A, Jordana-Ariza N, Garzón M, et al. Liquid biopsy in non-small cell lung cancer. Front Med 2016;3:69.
206. Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med 2008;14:985-90.
207. Kidess E, Jeffrey SS. Circulating tumor cells versus tumor-derived cell-free DNA: rivals or partners in cancer care in the era of single-cell analysis? Genome Med 2013;5:70.