REFERENCES
2. Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 2002;10:457-68.
3. Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 2007;25:903-15.
4. Peterson TR, Laplante M, Thoreen CC, Sancak Y, Kang SA, et al. Deptor is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 2009;137:873-86.
5. Ramirez-Rangel I, Bracho-Valdes I, Vazquez-Macias A, Carretero-Ortega J, Reyes-Cruz G, et al. Regulation of mTORC1 complex assembly and signaling by GRp58/ERp57. Mol Cell Biol 2011;31:1657-71.
6. Kaizuka T, Hara T, Oshiro N, Kikkawa U, Yonezawa K, et al. Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly. J Biol Chem 2010;285:20109-16.
7. Saci A, Cantley LC, Carpenter CL. Rac1 regulates the activity of mTORC1 and mTORC2 and controlscellular size. Mol Cell 2011;42:50-61.
8. Gaubitz C, Prouteau M, Kusmider B, Loewith R. TORC2 structure and function. Trends Biochem. Sci 2016;41:532-45.
9. Inoki K, Li Y, Zhu T, Wu J, Guan KL. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 2002;4:648-57.
10. Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell 2002;10:151-62.
11. Potter CJ, Pedraza LG, Xu T. Akt regulates growth by directly phosphorylating Tsc2. Nat Cell Biol 2002;4:658-65.
14. Kim J, Guan KL. mTOR as a central hub of nutrient signalling and cell growth. Nat Cell Biol 2019;21:63-71.
15. Nojima H, Tokunaga C, Eguchi S, Oshiro N, Hidayat S, et al. The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif. J Biol Chem 2003;278:15461-4.
16. Gingras AC, Kennedy SG, O’Leary MA, Sonenberg N, Hay N. 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev 1998;12:502-13.
17. Dodd KM, Yang J, Shen MH, Sampson JR, Tee AR. mTORC1 drives HIF-1α and VEGF-A signalling via multiple mechanisms involving 4E-BP1, S6K1 and STAT3. Oncogene 2015;34:2239-50.
18. Düvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 2010;39:171-83.
19. Csibi A, Fendt SM, Li C, Poulogiannis G, Choo AY, et al. The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell 2013;153:840-54.
20. Porstmann T, Santos CR, Griffiths B, Cully M, Wu M, et al. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab 2008;8:224-36.
21. Li S, Brown MS, Goldstein JL. Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis. PNAS 2010;107:3441-6.
22. Dunlop EA, Tee AR. The kinase triad, AMPK, mTORC1 and ULK1, maintains energy and nutrient homoeostasis. Biochem Soc Trans 2013;41:939-43.
23. Vezina C, Kudelski A, Sehgal SN. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo) 1975;28:721-6.
24. Asleh R, Briasoulis A, Kremers WK, Adigun R, Boilson BA, et al. Long-term sirolimus for primary immunosuppression in heart transplant recipients. J Am Coll Cardiol 2018;71:636-50.
25. Viana SD, Reis F, Alves R. Therapeutic use of mTOR inhibitors in renal diseases: advances, drawbacks, and challenges. Oxid Med Cell Longev 2018;2018:3693625.
26. Aylett CH, Sauer E, Imseng S, Boehringer D, Hall MN, et al. Architecture of human mTOR complex 1. Science 2016;351:48-52.
28. Kolos JM, Voll AM, Bauder M, Hausch F. FKBP ligands - where we are and where to go? Fron Pharm 2018;9:1425.
29. Kirchner GI, Meier-Wiedenbach I, Manns MP. Clinical pharmacokinetics of everolimus. Clin Pharmacokinet 2004;43:83-95.
30. Crowe A, Bruelisauer A, Duerr L, Guntz P, Lemaire M. Absorption and intestinal metabolism of SDZ-RAD and rapamycin in rats. Drug Metab Dispos 1999;27:627-32.
31. Choo AY, Yoon SO, Kim SG, Roux PP, Blenis J. Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation. Proc Natl Acad Sci U S A 2008;105:17414-9.
32. Cassell A, Freilino ML, Lee J, Barr S, Wang L, et al. Targeting TORC1/2 enhances sensitivity to EGFR inhibitors in head and neck cancer preclinical models. Neoplasia 2012;14:1005-14.
33. Lou HZ, Weng XC, Pan HM, Pan Q, Sun P, et al. The novel mTORC1/2 dual inhibitor INK-128 suppresses survival and proliferation of primary and transformed human pancreatic cancer cells. Biochem Biophys Res Commun 2014;450:973-8.
34. Li C, Cui JF, Chen MB, Liu CY, Liu F, et al. The preclinical evaluation of the dual mTORC1/2 inhibitor INK-128 as a potential anti-colorectal cancer agent. Cancer Biol Ther 2015;16:34-42.
35. Basu B, Dean E, Puglisi M, Greystroke A, Ong M, et al. First-in-human pharmacokinetic and pharmacodynamics study of the dual mTORC1/2 inhibitor AZD2014. Clin Cancer Res 2015;21:3412-9.
36. Powles T, Wheater M, Din O, Geldart T, Boleti E, et al. A randomised phase 2 study of AZD2014 versus everolimus in patients with VEGF-refractory metastatic clear cell renal cancer. Eur Urol 2016;69:450-6.
37. Álvarez-Garcia V, Tawi Y, Wise HM, Leslie NR. Mechanisms of PTEN loss in cancer: It’s all about diversity. Semin Cancer Biol 2019. Epub ahead of print [PMID: 30738865 DOI: 10.1016/j.semcancer.2019.02.001]
38. Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP. Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 2005;121:179-93.
39. Carrière A, Cargnello M, Julien LA, Gao H, Bonneil E, et al. Oncogenic MAPK signalling stimulates mTORC1 activity by promoting RSK-mediated raptor phosphorylation. Curr Biol 2008;18:1269-77.
40. Hobbs GA, Der CJ, Rossman KL. RAS isoforms and mutations in cancer at a glance. J Cell Sci 2016;129:1287-92.
41. Holderfield M, Deuker MM, McCormick F, McMahon M. Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. Nat Rev Cancer 2014;14:455-67.
42. Guo Y, Chekaluk Y, Zhang J, Du J, Gray NS, et al. TSC1 involvement in bladder cancer: diverse effects and therapeutic implications. J Pathol 2013;230:17-27.
43. Yuan F, Shi M, Ji J, Shi H, Zhou C, et al. KRAS and DAXX/ATRX gene mutations are correlated with the clinicopathological features, advanced diseases, and poor prognosis in Chinese patients with pancreatic neuroendocrine tumors. Int J Biol Sci 2014;10:957-65.
44. Huynh H, Hao HX, Chan SL, Chen D, Ong R, et al. Loss of tuberous sclerosis complex 2 (TSC2) is frequent in hepatocellular carcinoma and predicts response to mTORC1 inhibitor everolimus. Mol Cancer Ther 2015;14:1224-35.
45. Zhang Y, Ng PK, Kucherlapati M, Chen F, Liu Y, et al. A pan-cancer proteogenomic atlas of PI3K/AKT/mTOR pathway alterations. Cancer Cell 2017;31:820-32.
46. Grabiner BC, Nardi V, Birsoy K, Possemato R, Shen K, et al. A diverse array of cancer-associated MTOR mutations are hyperactivating and can predict rapamycin sensitivity. Cancer Discov 2014;4:554-63.
47. Bissler JJ, McCormack FX, Young LR, Elwing JM, Chuck G, et al. Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N Engl J Med 2008;358:140-51.
48. Davies DM, de Vries PJ, Johnson SR, McCartney DL, Cox JA, et al. Sirolimus therapy for angiomyolipoma in tuberous sclerosis and sporadic lymphangioleiomyomatosis: a phase 2 trial. Clin Cancer Res 2011;17:4071-81.
49. Cabrera López C, Martí T, Catalá V, Torres F, Mateu S, et al. Effects of rapamycin on angiomyolipomas in patients with tuberous sclerosis. Nefrologia 2011;31:292-8.
50. Krueger DA, Care MM, Holland K, Agricola K, Tudor C, et al. Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N Engl J Med 2010;363:1801-11.
51. Dabora SL, Franz DN, Ashwal S, Sagalowsky A, DiMario FJ Jr, et al. Multicenter phase 2 trial of sirolimus for tuberous sclerosis: kidney angiomyolipomas and other tumors regress and VEGF- D levels decrease. PLoS One 2011;6:e23379.
52. Franz DN, Belousova E, Sparagana S, Bebin EM, Frost M, et al. Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 2013;381:125-32.
53. Saffari A, Brosse I, Wiemer-Kriel A, Wilken B, Kreuzaler P, et al. Safety and efficacy of mTOR inhibitor treatment in patients with tuberous sclerosis complex under 2 years of age - a multicenter retrospective study. Orphanet J Rare Dis 2019;14:96.
54. Pantuck AJ, Seligson DB, Klatte T, Yu H, Leppert JT, et al. Prognostic relevance of the mTOR pathway in renal cell carcinoma: implications for molecular patient selection for targeted therapy. Cancer 2007;109:2257-67.
55. Motzer RJ, Escudier B, Oudard S, Hutson TE, Porta C, et al; RECORD-1 Study Group. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 2008;372:449-56.
56. Motzer RJ, Escudier B, Oudard S, Hutson TE, Porta C, et al; RECORD-1 Study Group. Phase 3 trial of everolimus for metastatic renal cell carcinoma : final results and analysis of prognostic factors. Cancer 2010;116:4256-65.
57. Stein A, Bellmunt J, Escudier B, Kim D, Stergiopoulos SG, et al; RECORD-1 Trial Study Group. Survival prediction in everolimus-treated patients with metastatic renal cell carcinoma incorporating tumor burden response in the RECORD-1 trial. Eur Urol 2013;64:994-1002.
58. Escudier B, Molinie V, Bracarda S, Maroto P, Szczylik C, et al. Open-label phase 2 trial of first-line everolimus monotherapy in patients with papillary metastatic renal cell carcinoma: RAPTOR final analysis. Eur J Cancer 2016;69:226-35.
59. Missiaglia E, Dalai I, Barbi S, Beghelli S, Falconi M, et al. Pancreatic endocrine tumors: expression profiling evidences a role for AKT-mTOR pathway. J Clin Oncol 2010;28:245-55.
60. Yao JC, Lombard-Bohas C, Baudin E, Kvols LK, Rougier P, et al. Daily oral everolimus activity in patients with metastatic pancreatic neuroendocrine tumors after failure of cytotoxic chemotherapy: a phase II trial. J Clin Oncol 2010;28:69-76.
61. Yao JC, Shah MH, Ito T, Lombard Bohas C, Wolin EM, et al; RAD001 in Advanced Neuroendocrine Tumors, Third Trial (RADIANT-3) Study Group. Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med 2011;364:514-23.
62. Yao JC, Fazio N, Singh S, Buzzoni R, Carnaghi C, et al. Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study. Lancet 2016;387:968-77.
63. Fazio N, Buzzoni R, Delle Fave G, Tesselaar ME, Wolin E, et al. Everolimus in advanced, progressive, well-differentiated, non-functional neuroendocrine tumors: RADIANT-4 lung subgroup analysis. Cancer Sci 2018;109:174-81.
64. Lau DK, Tay RY, Yeung YH, Chionh F, Mooi J, et al. Phase II study of everolimus (RAD001) monotherapy as first-line treatment in advanced biliary tract cancer with biomarker exploration: the RADiChol Study. Br J Cancer 2018;118:966-71.
65. Demetri GD, Chawla SP, Ray-Coquard I, Le Cesne A, Staddon AP, et al. Results of an international randomized phase III trial of the mammalian target of rapamycin inhibitor ridaforolimus versus placebo to control metastatic sarcomas in patients after benefit from prior chemotherapy. J Clin Oncol 2013;31:2485-92.
66. Doi T, Muro K, Boku N, Yamada Y, Nishina T, et al. Multicenter phase II study of everolimus in patients with previously treated metastatic gastric cancer. J Clin Oncol 2010;28:1904-10.
67. Ohtsu A, Ajani JA, Bai YX, Bang YJ, Chung HC, et al. Everolimus for previously treated advanced gastric cancer: results of the randomized, double-blind, phase III GRANITE-1 study. J Clin Oncol 2013;31:3935-43.
68. O’Donnell A, Faivre S, Burris HA, Rea D, Papadimitrakopoulou V, et al. Phase I pharmacokinetic and pharmacodynamic study of the oral mammalian target of rapamycin inhibitor everolimus in patients with advanced solid tumors. J Clin Oncol 2008;26:1588-95.
69. Reungwetwattana T, Molina JR, Mandrekar SJ, Allen-Ziegler K, Rowland KM, et al. Brief report: a phase II “window-of-opportunity” frontline study of the mTOR inhibitor, temsirolimus given as a single agent in patients with advanced NSCLC, an NCCTG study. J Thorac Oncol 2012;7:919-22.
70. Besse B, Leighl N, Bennouna J, Papadimitrakopoulou VA, Blais N, et al. Phase II study of everolimus-erlotinib in previously treated patients with advanced non-small-cell lung cancer. Ann Oncol 2014;25:409-15.
71. Ng K, Tabernero J, Hwang J, Bajetta E, Sharma S, et al. Phase II study of everolimus in patients with metastatic colorectal adenocarcinoma previously treated with bevacizumab-, fluoropyrimidine-, oxaliplatin-, and irinotecan-based regimens. Clin Cancer Res 2013;19:3987-95.
72. Tabernero J, Rojo F, Calvo E, Burris H, Judson I, et al. Dose- and schedule-dependent inhibition of the mammalian target of rapamycin pathway with everolimus: a phase I tumor pharmacodynamic study in patients with advanced solid tumors. J Clin Oncol 2008;26:1603-10.
73. Spindler KL, Sorensen MM, Pallisgaard N, Andersen RF, Havelund BM, et al. Phase II trial of temsirolimus alone and in combination with irinotecan for KRAS mutant metastatic colorectal cancer: outcome and results of KRAS mutational analysis in plasma. Acta Oncol 2013;52:963-70.
74. Armstrong AJ, Shen T, Halabi S, Kemeny G, Bitting RL, et al. A phase II trial of temsirolimus in men with castration-resistant metastatic prostate cancer. Clin Genitourin Cancer 2013;11:397-406.
75. Templeton AJ, Dutoit V, Cathomas R, Rothermundt C, Bärtschi D, et al; Swiss Group for Clinical Cancer Research (SAKK). Phase 2 trial of single-agent everolimus in chemotherapy-naive patients with castration-resistant prostate cancer (SAKK 08/08). Eur Urol 2013;64:150-8.
76. O’Reilly KE, Rojo F, She QB, Solit D, Mills GB, et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 2006;66:1500-8.
77. Carracedo A, Ma L, Teruya-Feldstein J, Rojo F, Salmena L, et al. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest 2008;118:3065-74.
78. Yu Y, Yoon SO, Poulogiannis G, Yang Q, Ma XM, et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signalling. Science 2011;332:1322-6.
79. Hsu PP, Kang SA, Rameseder J, Zhang Y, Ottina KA, et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signalling. Science 2011;332:1317-22.
80. Kim YC, Guan KL. mTOR: a pharmacologic target for autophagy regulation. J Clin Invest 2015;125:25-32.
81. Roux PP, Shahbazian D, Vu H, Holz MK, Cohen MS, et al. RAS/ERK signaling promotes site-specific ribosomal protein S6 phosphorylation via RSK and stimulates cap-dependent translation. J Biol Chem 2007;282:14056-64.
82. Sato T, Nakashima A, Guo L, Coffman K, Tamanoi F. Single amino-acid changes that confer constitutive activation of mTOR are discovered in human cancer. Oncogene 2010;29:2746-52.
83. The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 2013;499:43-9.
84. Wagle N, Grabiner BC, van Allen EM, Amin-Mansour A, Taylor-Weiner A, et al. Response and acquired resistance to everolimus in anaplastic thyroid cancer. N Engl J Med 2014;371:1426-33.
85. Tan J, Lee PL, Li Z, Jiang X, Lim YC, et al. B55β-associated PP2A complex controls PDK1-directed myc signaling and modulates rapamycin sensitivity in colorectal cancer. Cancer Cell 2010;18:459-71.
86. Gerlinger M, Rowan AJ, Horswell S, Math M, Larkin J, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012;366:883-92.
87. El-Chemaly S, Taveira-Dasilva A, Goldberg HJ, Peters E, Haughey M, et al. Sirolimus and autophagy inhibition in lymphangioleiomyomatosis: results of a phase i clinical trial. Chest 2017;151:1302-10.
88. Haas NB, Appleman LJ, Stein M, Redlinger M, Wilks M, et al. Autophagy inhibition to augment mTOR inhibition: a phase i/ii trial of everolimus and hydroxychloroquine in patients with previously treated renal cell carcinoma. Clin Cancer Res 2019;25:2080-7.
89. Chi MS, Lee CY, Huang SC, Yang KL, Ko HL, et al. Double autophagy modulators reduce 2-deoxyglucose uptake in sarcoma patients. Oncotarget 2015;6:29808-17.
90. Schenone S, Brullo C, Musumeci F, Radi M, Botta M. ATP-competitive inhibitors of mTOR: an update. Curr Medicin Chem 2011;18:2995-3014.
91. Fazio N, Buzzoni R, Baudin E, Antonuzzo L, Hubner RA, et al. A phase ii study of bez235 in patients with everolimus-resistant, advanced pancreatic neuroendocrine tumours. Anticancer Res 2016;36:713-9.
92. Rodon J, Pérez-Fidalgo A, Krop IE, Burris H, Guerrero-Zotano A, et al. Phase 1/1b dose escalation and expansion study of BEZ235, a dual PI3K/mTOR inhibitor, in patients with advanced solid tumors including patients with advanced breast cancer. Cancer Chemother Pharmacol 2018;82:285-98.
93. Britten CD, Adjei AA, Millham R, Houk BE, Borzillo G, et al. Phase I study of PF-04691502, a small-molecule, oral, dual inhibitor of PI3K and mTOR, in patients with advanced cancer. Invest New Drugs 2014;32:510-7.
94. Bendell JC, Varghese AM, Hyman DM, Bauer TM, Pant S, et al. A first-in-human phase 1 study of LY3023414, an oral PI3K/mTOR dual inhibitor, in patients with advanced cancer. Clin Cancer Res 2018;24:3253-62.
95. Roberts PJ, Usary JE, Darr DB, Dillon PM, Pfefferle AD, et al. Combined PI3K/mTOR and MEK inhibition provides broad antitumor activity in faithful murine cancer models. Clin Cancer Res 2012;18:5290-303.
96. Tolcher AW, Bendell JC, Papadopoulos KP, Burris HA, Patnaik A, et al. A phase IB trial of the oral MEK inhibitor trametinib (GSK1120212) in combination with everolimus in patients with advanced solid tumors. Ann Oncol 2015;26:58-64.
97. Liu X, Lorusso P, Mita M, Piha-Paul S, Hong DS, et al. Incidence of mucositis in patients treated with temsirolimus-based regimens and correlation to treatment response. Oncologist 2014;19:426-8.
98. Kasner MT, Mick R, Jeschke GR, Carabasi M, Filicko-O’Hara J, et al. Sirolimus enhances remission induction in patients with high risk acute myeloid leukemia and mTORC1 target inhibition. Invest New Drugs 2018;36:657-66.
99. Burnett AK, Das Gupta E, Knapper S, Khwaja A, Sweeney M, et al; UK NCRI AML Study Group. Addition of the mammalian target of rapamycin inhibitor, everolimus, to consolidation therapy in acute myeloid leukemia: experience from the UK NCRI AML17 trial. Haematologica 2018;103:1654-61.
100. Schuetzea SM, Zhao L, Chugh R, Thomas DG, Lucas DR, et al. Results of a phase II study of sirolimus and cyclophosphamide in patients with advanced sarcoma. Eur J Cancer 2012;48:1347-53.
101. Wood A, George S, Adra N, Chintala S, Damayanti N, et al. Phase I study of the mTOR inhibitor everolimus in combination with the histone deacetylase inhibitor panobinostat in patients with advanced clear cell renal cell carcinoma. Invest New Drugs 2019. Epub ahead of print [DOI: 10.1007/s10637-019-00864-7]
102. Tew WP, Sill MW, Walker JL, Secord AA, Bonebrake AJ, et al. Randomized phase II trial of bevacizumab plus everolimus versus bevacizumab alone for recurrent or persistent ovarian, fallopian tube or peritoneal carcinoma: An NRG oncology/gynecologic oncology group study. Gynecol Oncol 2018;151:257-263.
103. Sherman WH. Sirolimus can reverse resistance to gemcitabine, capecitabine and docetaxel combination therapy in pancreatic cancer. JOP 2009;10:393-5.
104. Lee JS, Yost SE, Blanchard S, Schmolze D, Yin HH, et al. Phase I clinical trial of the combination of eribulin and everolimus in patients with metastatic triple-negative breast cancer. Breast Cancer Res 2019;21:119.
105. Shi Y, Zhang W, Ye Y, Cheng Y, Han L, et al. Benefit of everolimus as a monotherapy for a refractory breast cancer patient bearing multiple genetic mutations in the PI3K/AKT/mTOR signaling pathway. Cancer Biol Med 2018;15:314-21.
106. Parachoniak CA, Rankin A, Gaffney B, Hartmaier R, Spritz D, et al. Exceptional durable response to everolimus in a patient with biphenotypic breast cancer harboring an STK11 variant. Cold Spring Harb Mol Case Stud 2017;3:a000778.
107. Iyer G, Hanrahan AJ, Milowsky MI, Al-Ahmadie H, Scott SN, et al. Genome sequencing identifies a basis for everolimus sensitivity. Science 2012;338:221.
108. Yi Z, Ma F, Liu B, Guan X, Li L, et al. Everolimus in hormone receptor-positive metastatic breast cancer: PIK3CA mutation H1047R was a potential efficacy biomarker in a retrospective study. BMC Cancer 2019;19:442.
109. Bellmunt J, Lalani AA, Jacobus S, Wankowicz SA, Polacek L, et al. Everolimus and pazopanib (E/P) benefit genomically selected patients with metastatic urothelial carcinoma. Br J Cancer 2018;119:707-12.
110. Sharma S, Becerra CR, Matrana MR, Alistar AT, Chiorean EG, et al. A phase I/II multicenter study of ABI-009 (nab-sirolimus) combined with FOLFOX and bevacizumab as first-line (1L) therapy in patients (pts) with metastatic colorectal cancer (mCRC) with or without PTEN loss. J Clin Oncol 2019;37.
111. Kwiatkowski DJ, Choueiri TK, Fay AP, Rini BI, Thorner AR, et al. Mutations in TSC1, TSC2, and MTOR are associated with response to rapalogs in patients with metastatic renal cell carcinoma. Clin Cancer Res 2016;22:2445-52.
112. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004;350:2129-39.
113. Juengel E, Kim D, Makarevic J, Reiter M, Tsaur I, et al. Molecular analysis of sunitinib resistant renal cell carcinoma cells after sequential treatment with RAD001 (everolimus) or sorafenib. J Cell Mol Med 2015;19:430-41.
114. Motzer RJ, Hutson TE, Glen H, Michaelson MD, Molina A, et al. Lenvatinib, everolimus, and the combination in patients with metastatic renal cell carcinoma: a randomised, phase 2, open-label, multicentre trial. Lancet Oncol 2015;16:1473-82.
115. Matsubara N, Naito Y, Nakano K, Fujiwara Y, Ikezawa H, et al. Lenvatinib in combination with everolimus in patients with advanced or metastatic renal cell carcinoma: a phase 1 study. Int J Urol 2018;25:922-8.
116. Hutson TE, Escudier B, Esteban E, Bjarnason GA, Lim HY, et al. Randomized phase III trial of temsirolimus versus sorafenib as second-line therapy after sunitinib in patients with metastatic renal cell carcinoma. J Clin Oncol 2014;32:760-7.
117. Zarrabi K, Fang C, Wu S. New treatment options for metastatic renal cell carcinoma with prior anti-angiogenesis therapy. J Hematol Oncol 2017;10:38.
118. Paplomata E, Zelnak A, Santa-Maria CA, Liu Y, Gogineni K, et al. Use of everolimus and trastuzumab in addition to endocrine therapy in hormone-refractory metastatic breast cancer. Clin Breast Cancer 2019;19:188-96.
119. Bachelot T, Bourgier C, Cropet C, Ray-Coquard I, Ferrero JM, et al. Randomized phase II trial of everolimus in combination with tamoxifen in patients with hormone receptor-positive, human epidermal growth factor receptor 2-negative metastatic breast cancer with prior exposure to aromatase inhibitors: a GINECO study. J Clin Oncol 2012;30:2718-24.
120. Baselga J, Campone M, Piccart M, Burris HA, Rugo HS, et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med 2012;366:520-9.
121. Kornblum N, Zhao F, Manola J, Klein P, Ramaswamy B, et al. Randomized phase II trial of fulvestrant plus everolimus or placebo in postmenopausal women with hormone receptor-positive, human epidermal growth factor receptor 2-negative metastatic breast cancer resistant to aromatase inhibitor therapy: results of PrE0102. J Clin Oncol 2018;36:1556-63.
122. Shimoi T, Shimomura A, Shien T, Uemura Y, Kato H, et al. Open-label Phase II study of everolimus plus endocrine therapy in postmenopausal women with ER-positive and HER2-negative metastatic breast cancer (Chloe trial). Open Access J Clin Trials 2018;10:13-8.
123. Schmid P, Zaiss M, Harper-Wynne C, Ferreira M, Dubey S, et al. Fulvestrant plus vistusertib vs fulvestrant plus everolimus vs fulvestrant alone for women with hormone receptor-positive metastatic breast cancer: the MANTA phase 2 randomized clinical trial. JAMA Oncol 2019. Epub head of print [DOI: 10.1001/jamaoncol.2019.2526]
124. Yoon DH, Ryu MH, Park YS, Lee HJ, Lee C, et al. Phase II study of everolimus with biomarker exploration in patients with advanced gastric cancer refractory to chemotherapy including fluoropyrimidine and platinum. Br J Cancer 2012;106:1039-44.
125. Buzzoni R, Pusceddu S, Bajetta E, De Braud F, Platania M, et al. Activity and safety of RAD001 (everolimus) in patients affected by biliary tract cancer progressing after prior chemotherapy: a phase II ITMO study. Ann Oncol 2014;25:1597-603.
126. Brose MS, Troxel AB, Yarchoan M, Cohen AB, Harlacker K, et al. A phase II study of everolimus (E) and sorafenib (S) in patients (PTS) with metastatic differentiated thyroid cancer who have progressed on sorafenib alone. J Clin Oncol 2015;33:6072.
127. Hanna GJ, Busaidy NL, Chau NG, Wirth LJ, Barletta JA, et al. Genomic correlates of response to everolimus in aggressive radioiodine-refractory thyroid cancer: a phase ii study. Clin Cancer Res 2018;24:1546-53.
128. Wolpin BM, Ng K, Zhu AX, Abrams T, Enzinger PC, et al. Multicenter phase II study of tivozanib (AV-951) and everolimus (RAD001) for patients with refractory, metastatic colorectal cancer. Oncologist 2013;18:377-8.
129. Lombard-Bohas C, Yao J, Hobday T, Van Cutsem E, Wolin E, et al. Impact of prior chemotherapy use on the efficacy of everolimus in patients with advanced pancreatic neuroendocrine tumors: a subgroup analysis of the phase III RADIANT-3 trial. Pancreas 2015;44:181-9.
130. Rodrik-Outmezguine VS, Okaniwa M, Yao Z, Novotny CJ, McWhirter C, et al. Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor. Nature 2016;534:272-6.