1. Hammond WA, Swaika A, Mody K. Pharmacologic resistance in colorectal cancer: a review. Ther Adv Med Oncol 2016;8:57-84.

2. Zeuner A, Todaro M, Stassi G, De Maria R. Colorectal cancer stem cells: from the crypt to the clinic. Cell Stem Cell 2014;15:692-705.

3. Todaro M, Francipane MG, Medema JP, Stassi G. Colon cancer stem cells: promise of targeted therapy. Gastroenterology 2010;138:2151-62.

4. Chen K, Huang YH, Chen JL. Understanding and targeting cancer stem cells: therapeutic implications and challenges. Acta Pharmacol Sin 2013;34:732-40.

5. Plaks V, Kong N, Werb Z. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell 2015;16:225-38.

6. Das M, Law S. Role of tumor microenvironment in cancer stem cell chemoresistance and recurrence. Int J Biochem Cell Biol 2018;103:115-24.

7. Barker N. Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nat Rev Mol Cell Biol 2014;15:19-33.

8. Cabarcas SM, Mathews LA, Farrar WL. The cancer stem cell niche--there goes the neighborhood? Int J Cancer 2011;129:2315-27.

9. Wu XB, Liu Y, Wang GH, Xu X, Cai Y, et al. Mesenchymal stem cells promote colorectal cancer progression through AMPK/mTOR-mediated NF-kappaB activation. Sci Rep 2016;6:21420.

10. Bazzichetto C, Conciatori F, Falcone I, Cognetti F, Milella M, et al. Advances in Tumor-Stroma Interactions: Emerging Role of Cytokine Network in Colorectal and Pancreatic Cancer. J Oncol 2019;2019:5373580.

11. Liu Q, Li A, Tian Y, Wu JD, Liu Y, et al. The CXCL8-CXCR1/2 pathways in cancer. Cytokine Growth Factor Rev 2016;31:61-71.

12. Ning Y, Labonte MJ, Zhang W, Bohanes PO, Gerger A, et al. The CXCR2 antagonist, SCH-527123, shows antitumor activity and sensitizes cells to oxaliplatin in preclinical colon cancer models. Mol Cancer Ther 2012;11:1353-64.

13. Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T. Opinion: migrating cancer stem cells - an integrated concept of malignant tumour progression. Nat Rev Cancer 2005;5:744-9.

14. Gao W, Chen L, Ma Z, Du Z, Zhao Z, et al. Isolation and phenotypic characterization of colorectal cancer stem cells with organ-specific metastatic potential. Gastroenterology 2013;145:636-46.e5.

15. Pan T, Xu J, Zhu Y. Self-renewal molecular mechanisms of colorectal cancer stem cells. Int J Mol Med 2017;39:9-20.

16. O’Brien CA, Kreso A, Ryan P, Hermans KG, Gibson L, et al. ID1 and ID3 regulate the self-renewal capacity of human colon cancer-initiating cells through p21. Cancer Cell 2012;21:777-92.

17. Kreso A, van Galen P, Pedley NM, Lima-Fernandes E, Frelin C, et al. Self-renewal as a therapeutic target in human colorectal cancer. Nat Med 2014;20:29-36.

18. Shang S, Hua F, Hu ZW. The regulation of beta-catenin activity and function in cancer: therapeutic opportunities. Oncotarget 2017;8:33972-89.

19. Rich JN. Cancer stem cells: understanding tumor hierarchy and heterogeneity. Medicine (Baltimore) 2016;95:S2-7.

20. Zhou Y, Xia L, Wang H, Oyang L, Su M, et al. Cancer stem cells in progression of colorectal cancer. Oncotarget 2018;9:33403-15.

21. Li Z. CD133: a stem cell biomarker and beyond. Exp Hematol Oncol 2013;2:17.

22. O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007;445:106-10.

23. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, et al. Identification and expansion of human colon-cancer-initiating cells. Nature 2007;445:111-5.

24. Kazama S, Kishikawa J, Kiyomatsu T, Kawai K, Nozawa H, et al. Expression of the stem cell marker CD133 is related to tumor development in colorectal carcinogenesis. Asian J Surg 2018;41:274-8.

25. Shmelkov SV, Butler JM, Hooper AT, Hormigo A, Kushner J, et al. CD133 expression is not restricted to stem cells, and both CD133+ and CD133- metastatic colon cancer cells initiate tumors. J Clin Invest 2008;118:2111-20.

26. Ozawa M, Ichikawa Y, Zheng YW, Oshima T, Miyata H, et al. Prognostic significance of CD44 variant 2 upregulation in colorectal cancer. Br J Cancer 2014;111:365-74.

27. Todaro M, Gaggianesi M, Catalano V, Benfante A, Iovino F, et al. CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis. Cell Stem Cell 2014;14:342-56.

28. Saito S, Okabe H, Watanabe M, Ishimoto T, Iwatsuki M, et al. CD44v6 expression is related to mesenchymal phenotype and poor prognosis in patients with colorectal cancer. Oncol Rep 2013;29:1570-8.

29. Zhao LH, Lin QL, Wei J, Huai YL, Wang KJ, et al. CD44v6 expression in patients with stage II or stage III sporadic colorectal cancer is superior to CD44 expression for predicting progression. Int J Clin Exp Pathol 2015;8:692-701.

30. Jing F, Kim HJ, Kim CH, Kim YJ, Lee JH, et al. Colon cancer stem cell markers CD44 and CD133 in patients with colorectal cancer and synchronous hepatic metastases. Int J Oncol 2015;46:1582-8.

31. Wang C, Xie J, Guo J, Manning HC, Gore JC, et al. Evaluation of CD44 and CD133 as cancer stem cell markers for colorectal cancer. Oncol Rep 2012;28:1301-8.

32. Levin TG, Powell AE, Davies PS, Silk AD, Dismuke AD, et al. Characterization of the intestinal cancer stem cell marker CD166 in the human and mouse gastrointestinal tract. Gastroenterology 2010;139:2072-82.e5.

33. Swart GW. Activated leukocyte cell adhesion molecule (CD166/ALCAM): developmental and mechanistic aspects of cell clustering and cell migration. Eur J Cell Biol 2002;81:313-21.

34. Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A 2007;104:10158-63.

35. Tachezy M, Zander H, Gebauer F, Marx A, Kaifi JT, et al. Activated leukocyte cell adhesion molecule (CD166)--its prognostic power for colorectal cancer patients. J Surg Res 2012;177:e15-20.

36. Liu D, Sun J, Zhu J, Zhou H, Zhang X, et al. Expression and clinical significance of colorectal cancer stem cell marker EpCAM(high)/CD44(+) in colorectal cancer. Oncol Lett 2014;7:1544-8.

37. Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 2007;450:1235-9.

38. Trzpis M, McLaughlin PM, de Leij LM, Harmsen MC. Epithelial cell adhesion molecule: more than a carcinoma marker and adhesion molecule. Am J Pathol 2007;171:386-95.

39. Lin CW, Liao MY, Lin WW, Wang YP, Lu TY, et al. Epithelial cell adhesion molecule regulates tumor initiation and tumorigenesis via activating reprogramming factors and epithelial-mesenchymal transition gene expression in colon cancer. J Biol Chem 2012;287:39449-59.

40. Leng Z, Xia Q, Chen J, Li Y, Xu J, et al. Lgr5+CD44+EpCAM+ Strictly Defines Cancer Stem Cells in Human Colorectal Cancer. Cell Physiol Biochem 2018;46:860-72.

41. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007;449:1003-7.

42. Van der Flier LG, Sabates-Bellver J, Oving I, Haegebarth A, De Palo M, et al. The Intestinal Wnt/TCF Signature. Gastroenterology 2007;132:628-32.

43. de Lau W, Barker N, Low TY, Koo BK, Li VS, et al. Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature 2011;476:293-7.

44. Uchida H, Yamazaki K, Fukuma M, Yamada T, Hayashida T, et al. Overexpression of leucine-rich repeat-containing G protein-coupled receptor 5 in colorectal cancer. Cancer Sci 2010;101:1731-7.

45. Hsu HC, Liu YS, Tseng KC, Hsu CL, Liang Y, et al. Overexpression of Lgr5 correlates with resistance to 5-FU-based chemotherapy in colorectal cancer. Int J Colorectal Dis 2013;28:1535-46.

46. Huang EH, Hynes MJ, Zhang T, Ginestier C, Dontu G, et al. Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res 2009;69:3382-9.

47. Kozovska Z, Patsalias A, Bajzik V, Durinikova E, Demkova L, et al. ALDH1A inhibition sensitizes colon cancer cells to chemotherapy. BMC Cancer 2018;18:656.

48. Hessman CJ, Bubbers EJ, Billingsley KG, Herzig DO, Wong MH. Loss of expression of the cancer stem cell marker aldehyde dehydrogenase 1 correlates with advanced-stage colorectal cancer. Am J Surg 2012;203:649-53.

49. Nakanishi Y, Seno H, Fukuoka A, Ueo T, Yamaga Y, et al. Dclk1 distinguishes between tumor and normal stem cells in the intestine. Nat Genet 2013;45:98-103.

50. Chandrakesan P, Yao J, Qu D, May R, Weygant N, et al. Dclk1, a tumor stem cell marker, regulates pro-survival signaling and self-renewal of intestinal tumor cells. Mol Cancer 2017;16:30.

51. Mohammadi Y, Tavangar SM, Saidijam M, Amini R, Etemadi K, et al. DCLK1 plays an important role in colorectal cancer tumorgenesis through the regulation of miR-200c. Biomed Pharmacother 2018;103:301-7.

52. Li L, Jones K, Mei H. Doublecotin-like kinase 1 increases chemoresistance of colorectal cancer cells through the anti-apoptosis pathway. J Stem Cell Res Ther 2019;9:447.

53. Vermeulen L, De Sousa EMF, van der Heijden M, Cameron K, de Jong JH, et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 2010;12:468-76.

54. Li HJ, Reinhardt F, Herschman HR, Weinberg RA. Cancer-stimulated mesenchymal stem cells create a carcinoma stem cell niche via prostaglandin E2 signaling. Cancer Discov 2012;2:840-55.

55. Lu J, Ye X, Fan F, Xia L, Bhattacharya R, et al. Endothelial cells promote the colorectal cancer stem cell phenotype through a soluble form of Jagged-1. Cancer Cell 2013;23:171-85.

56. Lotti F, Jarrar AM, Pai RK, Hitomi M, Lathia J, et al. Chemotherapy activates cancer-associated fibroblasts to maintain colorectal cancer-initiating cells by IL-17A. J Exp Med 2013;210:2851-72.

57. Conciatori F, Bazzichetto C, Falcone I, Pilotto S, Bria E, et al. Role of mTOR Signaling in Tumor Microenvironment: An Overview. Int J Mol Sci 2018;19:E2453.

58. Kryczek I, Lin Y, Nagarsheth N, Peng D, Zhao L, et al. IL-22(+)CD4(+) T cells promote colorectal cancer stemness via STAT3 transcription factor activation and induction of the methyltransferase DOT1L. Immunity 2014;40:772-84.

59. David JM, Dominguez C, Hamilton DH, Palena C. The IL-8/IL-8R Axis: A Double Agent in Tumor Immune Resistance. Vaccines (Basel) 2016;4:E22.

60. Long X, Ye Y, Zhang L, Liu P, Yu W, et al. IL-8, a novel messenger to cross-link inflammation and tumor EMT via autocrine and paracrine pathways (Review). Int J Oncol 2016;48:5-12.

61. Wang J, Wang Y, Wang S, Cai J, Shi J, et al. Bone marrow-derived mesenchymal stem cell-secreted IL-8 promotes the angiogenesis and growth of colorectal cancer. Oncotarget 2015;6:42825-37.

62. Hwang WL, Yang MH, Tsai ML, Lan HY, Su SH, et al. SNAIL regulates interleukin-8 expression, stem cell-like activity, and tumorigenicity of human colorectal carcinoma cells. Gastroenterology 2011;141:279-91.e5.

63. Hwang WL, Lan HY, Cheng WC, Huang SC, Yang MH. Tumor stem-like cell-derived exosomal RNAs prime neutrophils for facilitating tumorigenesis of colon cancer. J Hematol Oncol 2019;12:10.

64. Roncucci L, Mora E, Mariani F, Bursi S, Pezzi A, et al. Myeloperoxidase-positive cell infiltration in colorectal carcinogenesis as indicator of colorectal cancer risk. Cancer Epidemiol Biomarkers Prev 2008;17:2291-7.

65. Droeser RA, Hirt C, Eppenberger-Castori S, Zlobec I, Viehl CT, et al. High myeloperoxidase positive cell infiltration in colorectal cancer is an independent favorable prognostic factor. PLoS One 2013;8:e64814.

66. Luo CW, Hsiao IL, Wang JY, Wu CC, Hung WC, et al. Cell Motility Facilitated by Mono(2-ethylhexyl) Phthalate via Activation of the AKT-beta-Catenin-IL-8 Axis in Colorectal Cancer. J Agric Food Chem 2018;66:9635-44.

67. Chang CJ, Chien Y, Lu KH, Chang SC, Chou YC, et al. Oct4-related cytokine effects regulate tumorigenic properties of colorectal cancer cells. Biochem Biophys Res Commun 2011;415:245-51.

68. Carpentino JE, Hynes MJ, Appelman HD, Zheng T, Steindler DA, et al. Aldehyde dehydrogenase-expressing colon stem cells contribute to tumorigenesis in the transition from colitis to cancer. Cancer Res 2009;69:8208-15.

69. Fisher RC, Bellamkonda K, Alex Molina L, Xiang S, Liska D, et al. Disrupting Inflammation-Associated CXCL8-CXCR1 Signaling Inhibits Tumorigenicity Initiated by Sporadic- and Colitis-Colon Cancer Stem Cells. Neoplasia 2019;21:269-81.

70. Fang S, Fang X. Advances in glucose metabolism research in colorectal cancer. Biomed Rep 2016;5:289-95.

71. Shimizu M, Tanaka N. IL-8-induced O-GlcNAc modification via GLUT3 and GFAT regulates cancer stem cell-like properties in colon and lung cancer cells. Oncogene 2019;38:1520-33.

72. Jiang M, Xu B, Li X, Shang Y, Chu Y, et al. O-GlcNAcylation promotes colorectal cancer metastasis via the miR-101-O-GlcNAc/EZH2 regulatory feedback circuit. Oncogene 2019;38:301-16.

73. Long J, Zhang CJ, Zhu N, Du K, Yin YF, et al. Lipid metabolism and carcinogenesis, cancer development. Am J Cancer Res 2018;8:778-91.

74. Ocvirk S, O’Keefe SJ. Influence of Bile Acids on Colorectal Cancer Risk: Potential Mechanisms Mediated by Diet - Gut Microbiota Interactions. Curr Nutr Rep 2017;6:315-22.

75. Nguyen TT, Ung TT, Kim NH, Jung YD. Role of bile acids in colon carcinogenesis. World J Clin Cases 2018;6:577-88.

76. Nguyen TT, Lian S, Ung TT, Xia Y, Han JY, et al. Lithocholic Acid Stimulates IL-8 Expression in Human Colorectal Cancer Cells Via Activation of Erk1/2 MAPK and Suppression of STAT3 Activity. J Cell Biochem 2017;118:2958-67.

Cancer Drug Resistance
ISSN 2578-532X (Online)


All published articles will preserved here permanently:


All published articles will preserved here permanently: