REFERENCES
1. Bean GR, Kremer JC, Prudner BC, Schenone AD, Yao JC, et al. A metabolic synthetic lethal strategy with arginine deprivation and chloroquine leads to cell death in ASS1-deficient sarcomas. Cell Death Dis 2016;7:e2406.
2. Kremer JC, Prudner BC, Lange SES, Bean GR, Schultze MB, et al. Arginine Deprivation Inhibits the Warburg Effect and Upregulates Glutamine Anaplerosis and Serine Biosynthesis in ASS1-Deficient Cancers. Cell Rep 2017;18:991-1004.
3. Long Y, Tsai WB, Wangpaichitr M, Tsukamoto T, Savaraj N, et al. Arginine Deiminase Resistance in Melanoma Cells Is Associated with Metabolic Reprogramming, Glucose Dependence, and Glutamine Addiction. Mol Cancer Ther 2013;12:2581-90.
4. Patel VB, Preedy VR, Rajendram R. L-Arginine in Clinical Nutrition. New York: Humana Press New York; 2015.
5. Dillon BJ, Prieto VG, Curley SA, Ensor CM, Holtsberg FW, et al. Incidence and distribution of argininosuccinate synthetase deficiency in human cancers. Cancer 2004;100:826-33.
6. Qiu F, Huang J, Sui M. Targeting arginine metabolism pathway to treat arginine-dependent cancers. Cancer Lett 2015;364:1-7.
7. Qiu F, Chen YR, Liu X, Chu CY, Shen LJ, et al. Arginine starvation impairs mitochondrial respiratory function in ASS1-deficient breast cancer cells. Sci Signal 2014;7:ra31.
8. Allen MD, Luong P, Hudson C, Leyton J, Delage B, et al. Prognostic and Therapeutic Impact of Argininosuccinate Synthetase 1 Control in Bladder Cancer as Monitored Longitudinally by PET Imaging. Cancer Res 2014;74:896-907.
9. Kelly MP, Jungbluth AA, Wu BW, Bomalaski J, Old LJ, et al. Arginine deiminase PEG20 inhibits growth of small cell lung cancers lacking expression of argininosuccinate synthetase. Br J Cancer 2012;106:324-32.
10. Miyamoto T, Lo PHY, Saichi N, Ueda K, Hirata M, et al. Argininosuccinate synthase 1 is an intrinsic Akt repressor transactivated by p53. Sci Adv 2017;3:e1603204.
11. Tissue expression of ASS1 - Summary - The Human Protein Atlas. Available from: https://v15.proteinatlas.org/ENSG00000130707-ASS1/tissue [Last accessed on 14 Aug 2019].
12. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, et al. Proteomics. Tissue-based map of the human proteome. Science 2015;347:1260419.
13. Delage B, Luong P, Maharaj L, O’Riain C, Syed N, et al. Promoter methylation of argininosuccinate synthetase-1 sensitises lymphomas to arginine deiminase treatment, autophagy and caspase-dependent apoptosis. Cell Death Dis 2012;3:e342.
14. Huang HY, Wu WR, Wang YH, Wang JW, Fang FM, et al. ASS1 as a novel tumor suppressor gene in myxofibrosarcomas: aberrant loss via epigenetic DNA methylation confers aggressive phenotypes, negative prognostic impact, and therapeutic relevance. Clin Cancer Res 2013;19:2861-72.
15. Tsai WB, Aiba I, Lee Sy, Feun L, Savaraj N, et al. Resistance to arginine deiminase treatment in melanoma cells is associated with induced argininosuccinate synthetase expression involving c-Myc/HIF-1alpha/Sp4. Mol Cancer Ther 2009;8:3223-33.
16. Szlosarek PW, Klabatsa A, Pallaska A, Sheaff M, Smith P, et al. In vivo loss of expression of argininosuccinate synthetase in malignant pleural mesothelioma is a biomarker for susceptibility to arginine depletion. Clin Cancer Res 2006;12:7126-31.
17. Nelson DL, Cox MM. Lehninger principles of biochemistry. New York - Basingstoke: Freeman - Macmillan; 2013.
19. Mori M, Gotoh T. Regulation of nitric oxide production by arginine metabolic enzymes. Biochem Bioph Res Co 2000;275:715-9.
20. Rabinovich S, Adler L, Yizhak K, Sarver A, Silberman A, et al. Diversion of aspartate in ASS1-deficient tumors fosters de novo pyrimidine synthesis. Nature 2015;527:379-83.
21. Sullivan LB, Luengo A, Danai LV, Bush LN, Diehl FF, et al. Aspartate is an endogenous metabolic limitation for tumour growth. Nat Cell Biol 2018;20:782-8.
22. Garcia-Bermudez J, Baudrier L, La K, Zhu XG, Fidelin J, et al. Aspartate is a limiting metabolite for cancer cell proliferation under hypoxia and in tumours. Nat Cell Biol 2018;20:775-81.
23. Erez A, Silberman A, Goldman O, Assayag OB, Jacob A, et al. Acid-induced downregulation of ASS1 contributes to the maintenance of intracellular pH in cancer. Cancer Res 2019;79:518-33.
24. Spinelli JB, Yoon H, Ringel AE, Jeanfavre S, Clish CB, et al. Metabolic recycling of ammonia via glutamate dehydrogenase supports breast cancer biomass. Science (New York, NY) 2017;358:941-6.
25. Sciacovelli M, Gonçalves E, Johnson TI, Zecchini VR, da Costa ASH, et al. Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition. Nature 2016;537:544-7.
26. Patil M, Bhaumik J, Babykutty S, Banerjee U, Fukumura D. Arginine dependence of tumor cells: targeting a chink in cancer’s armor. Oncogene 2016;35:4957-72.
27. Oginsky EL, Gehrig RF. The arginine dihydrolase system of Streptococcus faecalis. II. Properties of arginine desimidase. J Biol Chem 1952;198:799-805.
28. Holtsberg FW, Ensor CM, Steiner MR, Bomalaski JS, Clark MA. Poly(ethylene glycol) (PEG) conjugated arginine deiminase: effects of PEG formulations on its pharmacological properties. J Control Release 2002;80:259-71.
29. Przystal JM, Hajji N, Khozoie C, Renziehausen A, Zeng Q, et al. Efficacy of arginine depletion by ADI-PEG20 in an intracranial model of GBM. Cell Death Dis 2018;9:1192.
30. Tsai WB, Aiba I, Long Y, Lin HK, Feun L, et al. Activation of Ras/PI3K/ERK Pathway Induces c-Myc Stabilization to Upregulate Argininosuccinate Synthetase, Leading to Arginine Deiminase Resistance in Melanoma Cells. Cancer Res 2012;72:2622-33.
31. Locke M, Ghazaly E, Freitas M, Mitsinga M, Lattanzio L, et al. Inhibition of the Polyamine Synthesis Pathway Is Synthetically Lethal with Loss of Argininosuccinate Synthase 1. Cell Rep 2016;16:1604-13.
32. Land SC, Tee AR. Hypoxia-inducible Factor 1α Is Regulated by the Mammalian Target of Rapamycin (mTOR) via an mTOR Signaling Motif. J Biol Chem 2007;282:20534-43.
33. Sears RC. The life cycle of C-myc: from synthesis to degradation. Cell Cycle (Georgetown, Tex) 2004;3:1133-7.
34. Long Y, Tsai WB, Chang JT, Estecio M, Wangpaichitr M, et al. Cisplatin-induced synthetic lethality to arginine-starvation therapy by transcriptional suppression of ASS1 is regulated by DEC1, HIF-1α, and c-Myc transcription network and is independent of ASS1 promoter DNA methylation. Oncotarget 2016;7:82658-70.
35. Tsai WB, Long Y, Chang JT, Savaraj N, Feun LG, et al. Chromatin remodeling system p300-HDAC2-Sin3A is involved in Arginine Starvation-Induced HIF-1α Degradation at the ASS1 promoter for ASS1 Derepression. Sci Rep 2017;7:10814.
36. Kim RH, Coates JM, Bowles TL, McNerney GP, Sutcliffe J, et al. Arginine Deiminase as a Novel Therapy for Prostate Cancer Induces Autophagy and Caspase-Independent Apoptosis. Cancer Res 2009;69:700-8.
37. DeVorkin L, Pavey N, Carleton G, Comber A, Ho C, et al. Autophagy Regulation of Metabolism Is Required for CD8+ T Cell Anti-tumor Immunity. Cell Rep 2019;27:502-13.e5.
38. Long Y, Tsai WB, Wang D, Hawke DH, Savaraj N, et al. Argininosuccinate synthetase 1 (ASS1) is a common metabolic marker of chemosensitivity for targeted arginine- and glutamine-starvation therapy. Cancer Lett 2017;388:54-63.
39. Prudner BC, Rathore R, Robinson AM, Godec AJ, Chang SF, et al. Arginine Starvation and Docetaxel Induce c-Myc-Driven hENT1 Surface Expression to Overcome Gemcitabine Resistance in ASS1-Negative Tumors. Clin Cancer Res 2019; doi: 10.1158/1078-0432.ccr-19-0206.
40. Takaku H, Takase M, Abe SI, Hayashi H, Miyazaki K. In vivo anti-tumor activity of arginine deiminase purified from Mycoplasma arginini. Int J Cancer 1992;51:244-9.
41. Ensor CM, Holtsberg FW, Bomalaski JS, Clark MA. Pegylated Arginine Deiminase (ADI-SS PEG20,000 mw) Inhibits Human Melanomas and Hepatocellular Carcinomas in Vitro and in Vivo. Cancer Res 2002;62:5443-50.
42. Abou-Alfa GK, Qin S, Ryoo BY, Lu SN, Yen CJ, et al. Phase III randomized study of second line ADI-PEG 20 plus best supportive care versus placebo plus best supportive care in patients with advanced hepatocellular carcinoma. Ann Oncol 2018;29:1402-8.
43. Tsai HJ, Jiang SS, Hung WC, Borthakur G, Lin SF, et al. A Phase II Study of Arginine Deiminase (ADI-PEG20) in Relapsed/Refractory or Poor-Risk Acute Myeloid Leukemia Patients. Sci Rep 2017;7:11253.
44. Ott PA, Carvajal RD, Pandit-Taskar N, Jungbluth AA, Hoffman EW, et al. Phase I/II study of pegylated arginine deiminase (ADI-PEG 20) in patients with advanced melanoma. Invest New Drugs 2013;31:425-34.
45. Beddowes E, Spicer J, Chan PY, Khadeir R, Corbacho JG, et al. Phase 1 Dose-Escalation Study of Pegylated Arginine Deiminase, Cisplatin, and Pemetrexed in Patients With Argininosuccinate Synthetase 1-Deficient Thoracic Cancers. J Clin Oncol 2017;35:1778-85.
46. Lowery MA, Yu KH, Kelsen DP, Harding JJ, Bomalaski JS, et al. A phase 1/1B trial of ADI-PEG 20 plus nab-paclitaxel and gemcitabine in patients with advanced pancreatic adenocarcinoma. Cancer 2017;123:4556-65.
47. Rodriguez PC, Quiceno DG, Ochoa AC. l-arginine availability regulates T-lymphocyte cell-cycle progression. Blood 2007;109:1568-73.
48. Szlosarek P, Khadeir R, Sheaff M, Locke M, Lau K, et al. MA 19.05 Pegylated Arginine Deiminase Potentiates PD-1/PD-L1 Immune Checkpoint Blockade in Malignant Mesothelioma. J Thorac Oncol 2017;12:S1884.
49. Brin E, Wu K, Lu HT, He Y, Dai Z, et al. PEGylated arginine deiminase can modulate tumor immune microenvironment by affecting immune checkpoint expression, decreasing regulatory T cell accumulation and inducing tumor T cell infiltration. Oncotarget 2017;8:58948-63.
50. Miraki-Moud F, Ghazaly E, Ariza-McNaughton L, Hodby KA, Clear A, et al. Arginine deprivation using pegylated arginine deiminase has activity against primary acute myeloid leukemia cells in vivo. Blood 2015;125:4060-8.
51. Prudner BC, Sun F, Kremer JC, Xu J, Huang C, et al. Amino Acid Uptake Measured by [18F]AFETP Increases in Response to Arginine Starvation in ASS1-Deficient Sarcomas. Theranostics 2018;8:2107-16.
52. Commisso C, Davidson SM, Soydaner-Azeloglu RG, Parker SJ, Kamphorst JJ, Hackett S, Grabocka E, Nofal M, Drebin JA, Thompson CB, Rabinowitz JD, Metallo CM, Vander Heiden MG, Bar-Sagi D. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 2013;497:633-7.
53. Kamphorst JJ, Nofal M, Commisso C, Hackett SR, Lu W, et al. Human Pancreatic Cancer Tumors Are Nutrient Poor and Tumor Cells Actively Scavenge Extracellular Protein. Cancer Res 2015;75:544-53.
54. Palm W, Park Y, Wright K, Pavlova NN, Tuveson DA, et al. The Utilization of Extracellular Proteins as Nutrients Is Suppressed by mTORC1. Cell 2015;162:259-70.
55. Kim SM, Nguyen TT, Ravi A, Kubiniok P, Finicle BT, et al. PTEN Deficiency and AMPK Activation Promote Nutrient Scavenging and Anabolism in Prostate Cancer Cells. Cancer Discov 2018;8:866-83.
56. Ghoneum M, Gollapudi S. Phagocytosis of Candida albicans by metastatic and non metastatic human breast cancer cell lines in vitro. Cancer Detect Prev 2004;28:17-26.
57. Coopman PJ, Thomas DM, Gehlsen KR, Mueller SC. Integrin alpha 3 beta 1 participates in the phagocytosis of extracellular matrix molecules by human breast cancer cells. Mol Biol Cell 1996;7:1789-804.
58. Overholtzer M, Mailleux AA, Mouneimne G, Normand G, Schnitt SJ, et al. A Nonapoptotic Cell Death Process, Entosis, that Occurs by Cell-in-Cell Invasion. Cell 2007;131:966-79.
59. Ito A, Katoh F, Kataoka TR, Okada M, Tsubota N, et al. A role for heterologous gap junctions between melanoma and endothelial cells in metastasis. J Clin Invest 2000;105:1189-97.
60. Zhang ZQ, Hu Y, Wang BJ, Lin ZX, Naus CCG, et al. Effective asymmetry in gap junctional intercellular communication between populations of human normal lung fibroblasts and lung carcinoma cells. Carcinogenesis 2004;25:473-82.
61. Leithe E, Sirnes S, Omori Y, Rivedal E. Downregulation of Gap Junctions in Cancer Cells. Crit Rev Oncog 2006;12:225-56.