1. Peters GJ. Cancer drug resistance: a new perspective. Cancer Drug Resist 2018;1:1-5.

2. Basu R, Qian Y, Kopchick JJ. Mechanisms in endocrinology: lessons from growth hormone receptor gene disrupted mice: are there benefits of endocrine defects? Eur J Endocrinol 2018;178:R155-81.

3. Kopchick JJ, List EO, Kelder B, Gosney ES, Berryman DE. Evaluation of growth hormone (GH) action in mice: discovery of GH receptor antagonists and clinical indications. Mol Cell Endocrinol 2014;386:34-45.

4. Lu M, Flanagan JU, Langley RJ, Hay MP, Perry JK. Targeting growth hormone function: strategies and therapeutic applications. Signal Transduct Target Ther 2019;4:3.

5. Young JA, List EO, Kopchick JJ. Deconstructing the growth hormone receptor(GHR): physical and metabolic phenotypes of tissue-specific GHR gene-disrupted mice. Available from: [Last accessed on 19 Jun 2019].

6. Pombo M, Pombo CM, Garcia A, Caminos E, Gualillo O, et al. Hormonal control of growth hormone secretion. Horm Res 2001;55 Suppl 1:11-6.

7. Khatib N, Gaidhane S, Gaidhane AM, Khatib M, Simkhada P, et al. Ghrelin: ghrelin as a regulatory Peptide in growth hormone secretion. J Clin Diagn Res 2014;8:MC13-7.

8. Dimaraki EV, Jaffe CA. Role of endogenous ghrelin in growth hormone secretion, appetite regulation and metabolism. Rev Endocr Metab Disord 2006;7:237-49.

9. Müller EE. Brain catecholamines and growth hormone release. Aspects of Neuroendocrinology. Berlin, Heidelberg: Springer Berlin Heidelberg; 1970. pp. 206-19.

10. Buonomo FC, Zimmermann NG, Lauterio TJ, Scanes CG. Catecholamine involvement in the control of growth hormone secretion in the domestic fowl. Gen Comp Endocrinol 1984;54:360-71.

11. Chang JP, Marchant TA, Cook AF, Nahorniak CS, Peter RE. Influences of catecholamines on growth hormone release in female goldfish, Carassius auratus. Neuroendocrinology 1985;40:463-70.

12. Pritzlaff CJ, Wideman L, Blumer J, Jensen M, Abbott RD, et al. Catecholamine release, growth hormone secretion, and energy expenditure during exercise vs. recovery in men. J Appl Physiol 2000;89:937-46.

13. Brooks AJ, Waters MJ. The growth hormone receptor: mechanism of activation and clinical implications. Nat Rev Endocrinol 2010;6:515-25.

14. Waters MJ, Brooks AJ. JAK2 activation by growth hormone and other cytokines. Biochem J 2015;466:1-11.

15. Rowland JE, Lichanska AM, Kerr LM, White M, D’Aniello EM, et al. In vivo analysis of growth hormone receptor signaling domains and their associated transcripts. Mol Cell Biol 2005;25:66-77.

16. Carter-Su C, King AP, Argetsinger LS, Smit LS, Vanderkuur J, et al. Signalling pathway of GH. Endocr J 1996;43:S65-70.

17. Jin H, Lanning NJ, Carter-Su C. JAK2, but not Src family kinases, is required for STAT, ERK, and Akt signaling in response to growth hormone in preadipocytes and hepatoma cells. Mol Endocrinol 2008;22:1825-41.

18. Bocharov EV, Lesovoy DM, Bocharova OV, Urban AS, Pavlov KV, et al. Structural basis of the signal transduction via transmembrane domain of the human growth hormone receptor. Biochim Biophys acta Gen Subj 2018;1862:1410-20.

19. Zhu T, Goh EL, Graichen R, Ling L, Lobie PE. Signal transduction via the growth hormone receptor. Cell Signal 2001;13:599-616.

20. Keene DE, Suescun MO, Bostwick MG, Chandrashekar V, Bartke A, et al. Puberty is delayed in male growth hormone receptor gene-disrupted mice. J Androl 2015;23:661-8.

21. Bougnères PF. Growth hormone effects on carbohydrate and lipid metabolism in childhood. Horm Res 1993;40:31-3.

22. DAVIDSON MB. Effect of growth hormone on carbohydrate and lipid metabolism. Endocr Rev 1987;8:115-31.

23. Møller N, Jørgensen JOL. Effects of growth hormone on glucose, lipid, and protein metabolism in human subjects. Endocr Rev 2009;30:152-77.

24. Vijayakumar A, Novosyadlyy R, Wu Y, Yakar S, LeRoith D. Biological effects of growth hormone on carbohydrate and lipid metabolism. Growth Horm IGF Res 2010;20:1-7.

25. Duran-Ortiz S, Berryman DE, Kopchick JJ. Growth hormone impact on adipose tissue and aging. Curr Opin Endocr Metab Res 2019;5:45-57.

26. Berryman D, List E. Growth Hormone’s effect on adipose tissue: quality versus quantity. Int J Mol Sci 2017;18:1621.

27. Duran-Ortiz S, Brittain AL, Kopchick JJ. The impact of growth hormone on proteomic profiles: a review of mouse and adult human studies. Clin Proteomics 2017;14:24.

28. Bartke A. Pleiotropic effects of growth hormone signaling in aging. Trends Endocrinol Metab 2011;22:437-42.

29. Ashpole NM, Logan S, Yabluchanskiy A, Mitschelen MC, Yan H, et al. IGF-1 has sexually dimorphic, pleiotropic, and time-dependent effects on healthspan, pathology, and lifespan. GeroScience 2017;39:129-45.

30. Sonntag WE, Lynch CD, Cefalu WT, Ingram RL, Bennett SA, et al. Pleiotropic effects of growth hormone and insulin-like growth factor (IGF)-1 on biological aging: inferences from moderate caloric-restricted animals. J Gerontol A Biol Sci Med Sci 1999;54:B521-38.

31. Basu A, McFarlane HG, Kopchick JJ. Spatial learning and memory in male mice with altered growth hormone action. Horm Behav 2017;93:18-30.

32. Gosney ES, Jara A, Basu A, Kopchick JJ. GH in the central nervous system: lessons from the growth hormone receptor knockout mouse. 2012;6:34-41.

33. Guevara-Aguirre J, Rosenbloom AL, Balasubramanian P, Teran E, Guevara-Aguirre M, et al. GH receptor deficiency in ecuadorian adults is associated with obesity and enhanced insulin sensitivity. J Clin Endocrinol Metab 2015;100:2589-96.

34. Laron Z. Lessons from 50 years of study of Laron syndrome. Endocr Pract 2015;21:1395-402.

35. Treadway MT, Zald DH. Reconsidering anhedonia in depression: lessons from translational neuroscience. Neurosci Biobehav Rev 2011;35:537-55.

36. Savage MO, Burren CP, Rosenfeld RG. The continuum of growth hormone-IGF-I axis defects causing short stature: diagnostic and therapeutic challenges. Clin Endocrinol (Oxf) 2009;72:721-8.

37. Laron Z. Laron syndrome (primary growth hormone resistance or insensitivity): the personal experience 1958-2003. J Clin Endocrinol Metab 2004;89:1031-44.

38. Ginsberg S, Laron Z, Bed MA, Vaisman N. The obesity of patients with Laron syndrome is not associated with excessive nutritional intake. Obes Res Clin Pract 2009;3:3-8.

39. Guevara-Aguirre J, Procel P, Guevara C, Guevara-Aguirre M, Rosado V, et al. Despite higher body fat content, Ecuadorian subjects with Laron syndrome have less insulin resistance and lower incidence of diabetes than their relatives. Growth Horm IGF Res 2016;28:76-8.

40. Guevara-Aguirre J, Rosenbloom AL, Fielder PJ, Diamond FB, Rosenfeld RG. Growth hormone receptor deficiency in Ecuador: clinical and biochemical phenotype in two populations. J Clin Endocrinol Metab 1993;76:417-23.

41. Junnila RK, Duran-Ortiz S, Suer O, Sustarsic EG, Berryman DE, et al. Disruption of the GH receptor gene in adult mice increases maximal lifespan in females. Endocrinology 2016;157:4502-13.

42. Junnila RK, List EO, Berryman DE, Murrey JW, Kopchick JJ. The GH/IGF-1 axis in ageing and longevity. Nat Rev Endocrinol 2013;9:366-76.

43. Krzisnik C, Kolacio Z, Battelino T, Brown M, Parks JS, et al. The “Little People” of the Island of Krk - revisited. Etiology of Hypopituitarism Revealed. Int J Disabil Hum Dev 1999;1.

44. Krzisnik C, Grgurić S, Cvijović K, Laron Z. Longevity of the hypopituitary patients from the island Krk: a follow-up study. Pediatr Endocrinol Rev 2010;7:357-62.

45. Salvatori R, Hayashida CY, Aguiar-Oliveira MH, Phillips JA, Souza AHO, et al. Familial Dwarfism due to a novel mutation of the growth hormone-releasing hormone receptor gene 1. J Clin Endocrinol Metab 1999;84:917-23.

46. Costa UMM, Oliveira CRP, Salvatori R, Barreto-Filho JAS, Campos VC, et al. Brazilian adult individuals with untreated isolated GH deficiency do not have accelerated subclinical atherosclerosis. Endocr Connect 2016;5:41-6.

47. Baumann G, Maheshwari H. The dwarfs of Sindh: severe growth hormone (GH) deficiency caused by a mutation in the GH-releasing hormone receptor gene. Acta Paediatr Suppl 1997;423:33-8.

48. Besson A, Salemi S, Gallati S, Jenal A, Horn R, et al. Reduced longevity in untreated patients with isolated growth hormone deficiency. J Clin Endocrinol Metab 2003;88:3664-7.

49. Rozzi FVR, Koudou Y, Froment A, Le Bouc Y, Botton J. Growth pattern from birth to adulthood in African pygmies of known age. Nat Commun 2015;6:7672.

50. Melmed S. Acromegaly pathogenesis and treatment. J Clin Invest 2009;119:3189-202.

51. Adelman D, Liebert, Nachtigall, Lamerson, Bakker B. Acromegaly: the disease, its impact on patients, and managing the burden of long-term treatment. Int J Gen Med 2013;31.

52. Dal J, Leisner MZ, Hermansen K, Farkas DK, Bengtsen M, et al. Cancer incidence in patients with acromegaly: a cohort study and meta-analysis of the literature. J Clin Endocrinol Metab 2018;103:2182-8.

53. Wolinski K, Stangierski A, Dyrda K, Nowicka K, Pelka M, et al. Risk of malignant neoplasms in acromegaly: a case-control study. J Endocrinol Invest 2017;40:319-22.

54. Ruchała M, Szczepanek-Parulska E, Fularz M, Woliński K. Risk of neoplasms in acromegaly. Contemp Oncol (Poznan, Poland) 2012;16:111-7.

55. Wolinski K, Czarnywojtek A, Ruchala M. Risk of thyroid nodular disease and thyroid cancer in patients with acromegaly - meta-analysis and systematic review. PLoS One 2014;9:e88787.

56. Cummings EA, Sochett EB, Dekker MG, Lawson ML, Daneman D. Contribution of growth hormone and IGF-I to early diabetic nephropathy in type 1 diabetes. Diabetes 1998;47:1341-6.

57. Landau D, Israel E, Rivkis I, Kachko L, Schrijvers BF, et al. The effect of growth hormone on the development of diabetic kidney disease in rats. Nephrol Dial Transplant 2003;18:694-702.

58. Kumar PA, Brosius FC, Menon RK. The glomerular podocyte as a target of growth hormone action: implications for the pathogenesis of diabetic nephropathy. Curr Diabetes Rev 2011;7:50-5.

59. Dekkers OM, Biermasz NR, Pereira AM, Romijn JA, Vandenbroucke JP. Mortality in acromegaly: a metaanalysis. J Clin Endocrinol Metab 2008;93:61-7.

60. Ratajczak MZ, Bartke A, Darzynkiewicz Z. Prolonged growth hormone/insulin/insulin-like growth factor nutrient response signaling pathway as a silent killer of stem cells and a culprit in aging. Stem Cell Rev Reports 2017;13:443-53.

61. Palmer AJ, Chung MY, List EO, Walker J, Okada S, et al. Age-related changes in body composition of bovine growth hormone transgenic mice. Endocrinology 2009;150:1353-60.

62. Kucia M, Masternak M, Liu R, Shin DM, Ratajczak J, et al. The negative effect of prolonged somatotrophic/insulin signaling on an adult bone marrow-residing population of pluripotent very small embryonic-like stem cells (VSELs). Age (Omaha) 2013;35:315-30.

63. Janecka A, Kołodziej-Rzepa M, Biesaga B. Clinical and molecular features of laron syndrome, a genetic disorder protecting from cancer. In Vivo 2016;30:375-81.

64. Di Bella G, Colori B, Scanferlato R. The over-expression of GH/GHR in tumour tissues with respect to healthy ones confirms its oncogenic role and the consequent oncosuppressor role of its physiological inhibitor, somatostatin: a review of the literature. Neuro Endocrinol Lett 2018;39:179-88.

65. Brittain AL, Basu R, Qian Y, Kopchick JJ. Growth hormone and the epithelial-to-mesenchymal transition. J Clin Endocrinol Metab 2017;102:3662-73.

66. Kong X, Wu W, Yuan Y, Pandey V, Wu Z, et al. Human growth hormone and human prolactin function as autocrine/paracrine promoters of progression of hepatocellular carcinoma. Oncotarget 2016;7:29465-79.

67. Chhabra Y, Waters MJ, Brooks AJ. Role of the growth hormone-IGF-1 axis in cancer. Expert Rev Endocrinol Metab 2011;6:71-84.

68. Perry JK, Liu DX, Wu ZS, Zhu T, Lobie PE. Growth hormone and cancer: an update on progress. Curr Opin Endocrinol Diabetes Obes 2013;20:307-13.

69. Boguszewski CL, Boguszewski MCDS. Growth Hormone’s links to cancer. Endocr Rev 2019;40:558-74.

70. Boguszewski CL. Update on GH therapy in adults. F1000Research 2017;6:2017.

71. Poidvin A, Carel JC, Ecosse E, Levy D, Michon J, et al. Increased risk of bone tumors after growth hormone treatment in childhood: a population-based cohort study in France. Cancer Med 2018; doi: 10.1002/cam4.1602.

72. Swerdlow AJ, Cooke R, Beckers D, Butler G, Carel JC, et al. Risk of meningioma in european patients treated with growth hormone in childhood: results from the SAGhE cohort. J Clin Endocrinol Metab 2019;104:658-64.

73. Swerdlow AJ, Cooke R, Beckers D, Borgström B, Butler G, et al. Cancer risks in patients treated with growth hormone in childhood: the SAGhE European cohort study. J Clin Endocrinol Metab 2017;102:1661-72.

74. Jørgensen JOL, Juul A. Therapy of endocrine disease: growth hormone replacement therapy in adults: 30 years of personal clinical experience. Eur J Endocrinol 2018;179:R47-56.

75. Höybye C, Christiansen JS. Growth hormone replacement in adults - current standards and new perspectives. Best Pract Res Clin Endocrinol Metab 2015;29:115-23.

76. Quigley CA, Child CJ, Zimmermann AG, Rosenfeld RG, Robison LL, et al. Mortality in children receiving growth hormone treatment of growth disorders: data from the genetics and neuroendocrinology of short stature international study. J Clin Endocrinol Metab 2017;102:3195-205.

77. Child CJ, Zimmermann AG, Chrousos GP, Cummings E, Deal CL, et al. Safety outcomes during pediatric GH therapy: final results from the prospective GeNeSIS observational program. J Clin Endocrinol Metab 2019;104:379-89.

78. Terzolo M, Reimondo G, Berchialla P, Ferrante E, Malchiodi E, et al. Acromegaly is associated with increased cancer risk: a survey in Italy. Endocr Relat Cancer 2017;24:495-504.

79. Rudd MF. Variants in the GH-IGF axis confer susceptibilityto lung cancer. Genome Res 2006;16:693-701.

80. Chhabra Y, Wong HY, Nikolajsen LF, Steinocher H, Papadopulos A, et al. A growth hormone receptor SNP promotes lung cancer by impairment of SOCS2-mediated degradation. Oncogene 2018;37:489-501.

81. Cao G, Lu H, Feng J, Shu J, Zheng D, et al. Lung cancer risk associated with Thr495Pro polymorphism of GHR in Chinese population. Jpn J Clin Oncol 2008;38:308-16.

82. Sobrier ML, Dastot F, Duquesnoy P, Kandemir N, Yordam N, et al. Nine novel growth hormone receptor gene mutations in patients with laron syndrome. J Clin Endocrinol Metab 1997;82:435-7.

83. Laron Z, Kauli R, Lapkina L, Werner H. IGF-I deficiency, longevity and cancer protection of patients with Laron syndrome. Mutat Res Mutat Res 2017;772:123-33.

84. Lapkina-Gendler L, Rotem I, Pasmanik-Chor M, Gurwitz D, Sarfstein R, et al. Identification of signaling pathways associated with cancer protection in Laron syndrome. Endocr Relat Cancer 2016;23:399-410.

85. Steuerman R, Shevah O, Laron Z. Congenital IGF1 deficiency tends to confer protection against post-natal development of malignancies. Eur J Endocrinol 2011;164:485-9.

86. Pollak M, Blouin M, Zhang J, Kopchick JJ. Reduced mammary gland carcinogenesis in transgenic mice expressing a growth hormone antagonist. Br J Cancer 2001;85:428-30.

87. Brunet-Dunand SE, Vouyovitch C, Araneda S, Pandey V, Vidal LJP, et al. Autocrine human growth hormone promotes tumor angiogenesis in mammary carcinoma. Endocrinology 2009;150:1341-52.

88. Perry JK, Wu ZS, Mertani HC, Zhu T, Lobie PE. Tumour-derived human growth hormone as a therapeutic target in oncology. Trends Endocrinol Metab 2017;28:587-96.

89. Weroha SJ, Haluska P. The insulin-like growth factor system in cancer. Endocrinol Metab Clin North Am 2012;41:335-50. vi

90. Yuan J, Yin Z, Tao K, Wang G, Gao J. Function of insulin-like growth factor 1 receptor in cancer resistance to chemotherapy. Oncol Lett 2018;15:41-7.

91. Kawa MP, Stecewicz I, Piecyk K, Paczkowska E, Rogińska D, et al. The impact of growth hormone therapy on the apoptosis assessment in CD34+ hematopoietic cells from children with growth hormone deficiency. Int J Mol Sci 2017;18.

92. Kastan MB, Canman CE, Leonard CJ. P53, cell cycle control and apoptosis: implications for cancer. Cancer Metastasis Rev 1995;14:3-15.

93. Chen J. The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression. Cold Spring Harb Perspect Med 2016;6:a026104.

94. van Oijen MG, Slootweg PJ. Gain-of-function mutations in the tumor suppressor gene p53. Clin Cancer Res 2000;6:2138-45.

95. Arnold RE, Weigent DA. The inhibition of apoptosis in EL4 lymphoma cells overexpressing growth hormone. Neuroimmunomodulation 2004;11:149-59.

96. Chesnokova V, Zonis S, Zhou C, Recouvreux MV, Ben-Shlomo A, et al. Growth hormone is permissive for neoplastic colon growth. Proc Natl Acad Sci U S A 2016;113:E3250-9.

97. Chesnokova V, Zonis S, Barrett R, Kameda H, Wawrowsky K, et al. Excess growth hormone suppresses DNA damage repair in epithelial cells. JCI insight 2019;4.

98. Chesnokova V, Zhou C, Ben-Shlomo A, Zonis S, Tani Y, et al. Growth hormone is a cellular senescence target in pituitary and nonpituitary cells. Proc Natl Acad Sci U S A 2013;110:E3331-9.

99. Waters MJ, Conway-Campbell BL. The oncogenic potential of autocrine human growth hormone in breast cancer. Proc Natl Acad Sci U S A 2004;101:14992-3.

100. Conway-Campbell BL, Wooh JW, Brooks AJ, Gordon D, Brown RJ, et al. Nuclear targeting of the growth hormone receptor results in dysregulation of cell proliferation and tumorigenesis. Proc Natl Acad Sci U S A 2007;104:13331-6.

101. Cheng Q, Chen J. Mechanism of p53 stabilization by ATM after DNA damage. Cell Cycle 2010;9:472-8.

102. Podlutsky A, Valcarcel-Ares MN, Yancey K, Podlutskaya V, Nagykaldi E, et al. The GH/IGF-1 axis in a critical period early in life determines cellular DNA repair capacity by altering transcriptional regulation of DNA repair-related genes: implications for the developmental origins of cancer. GeroScience 2017;39:147-60.

103. Minoia M, Gentilin E, Molè D, Rossi M, Filieri C, et al. Growth hormone receptor blockade inhibits growth hormone-induced chemoresistance by restoring cytotoxic-induced apoptosis in breast cancer cells independently of estrogen receptor expression. J Clin Endocrinol Metab 2012;97:E907-16.

104. Zatelli MC, Minoia M, Molè D, Cason V, Tagliati F, et al. Growth hormone excess promotes breast cancer chemoresistance. J Clin Endocrinol Metab 2009;94:3931-8.

105. Gentilin E, Minoia M, Bondanelli M, Tagliati F, Degli Uberti EC, et al. Growth hormone differentially modulates chemoresistance in human endometrial adenocarcinoma cell lines. Endocrine 2017;56:621-32.

106. Bogazzi F, Ultimieri F, Raggi F, Russo D, Vanacore R, et al. Growth hormone inhibits apoptosis in human colonic cancer cell lines: antagonistic effects of peroxisome proliferator activated receptor-γ ligands. Endocrinology 2004;145:3353-62.

107. Subramani R, Lopez-Valdez R, Salcido A, Boopalan T, Arumugam A, et al. Growth hormone receptor inhibition decreases the growth and metastasis of pancreatic ductal adenocarcinoma. Exp Mol Med 2014;46:e117.

108. Subramani R, Nandy SB, Pedroza DA, Lakshmanaswamy R. Role of growth hormone in breast cancer. Endocrinology 2017;158:1543-55.

109. Kaulsay KK, Mertani HC, Törnell J, Morel G, Lee KO, et al. Autocrine stimulation of human mammary carcinoma cell proliferation by human growth hormone. Exp Cell Res 1999;250:35-50.

110. Mertani HC, Zhu T, Goh EL, Lee KO, Morel G, et al. Autocrine human growth hormone (hGH) regulation of human mammary carcinoma cell gene expression. Identification of CHOP as a mediator of hGH-stimulated human mammary carcinoma cell survival. J Biol Chem 2001;276:21464-75.

111. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest 2009;119:1420-8.

112. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 2014;15:178-96.

113. Singh A, Settleman J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 2010;29:4741-51.

114. Du B, Shim J. Targeting epithelial-mesenchymal transition (EMT) to overcome drug resistance in cancer. Molecules 2016;21:965.

115. Tsai JH, Yang J. Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev 2013;27:2192-206.

116. Mitra A, Mishra L, Li S. EMT, CTCs and CSCs in tumor relapse and drug-resistance. Oncotarget 2015;6:10697-711.

117. Kong D, Li Y, Wang Z, Sarkar F. Cancer stem cells and epithelial-to-mesenchymal transition (EMT)-phenotypic cells: are they cousins or twins? Cancers (Basel) 2011;3:716-29.

118. Aiello NM, Brabletz T, Kang Y, Nieto MA, Weinberg RA, et al. Upholding a role for EMT in pancreatic cancer metastasis. Nature 2017;547:E7-8.

119. Fischer KR, Durrans A, Lee S, Sheng J, Li F, et al. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature 2015;527:472-6.

120. Kurrey NK, Jalgaonkar SP, Joglekar AV, Ghanate AD, Chaskar PD, et al. Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cells 2009;27:2059-68.

121. Yang H, Zhang G, Che X, Yu S. Slug inhibition increases radiosensitivity of nasopharyngeal carcinoma cell line C666-1. Exp Ther Med 2018;15:3477-82.

122. Pulkka OP, Nilsson B, Sarlomo-Rikala M, Reichardt P, Eriksson M, et al. SLUG transcription factor: a pro-survival and prognostic factor in gastrointestinal stromal tumour. Br J Cancer 2017;116:1195-202.

123. Yochum ZA, Socinski MA, Burns TF. Paradoxical functions of ZEB1 in EGFR-mutant lung cancer: tumor suppressor and driver of therapeutic resistance. J Thorac Dis 2016;8:E1528-31.

124. Yochum ZA, Cades J, Wang H, Chatterjee S, Simons BW, et al. Targeting the EMT transcription factor TWIST1 overcomes resistance to EGFR inhibitors in EGFR-mutant non-small-cell lung cancer. Oncogene 2019;38:656-70.

125. Mukhina S, Mertani HC, Guo K, Lee KO, Gluckman PD, et al. Phenotypic conversion of human mammary carcinoma cells by autocrine human growth hormone. Proc Natl Acad Sci U S A 2004;101:15166-71.

126. Yilmaz M, Christofori G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev 2009;28:15-33.

127. Aiello NM, Maddipati R, Norgard RJ, Balli D, Li J, et al. EMT subtype influences epithelial plasticity and mode of cell migration. Dev Cell 2018;45:681-95.e4.

128. Zhang X, Zhu T, Chen Y, Mertani HC, Lee KO, et al. Human growth hormone-regulated HOXA1 is a human mammary epithelial oncogene. J Biol Chem 2003;278:7580-90.

129. Zhu T, Starling-Emerald B, Zhang X, Lee KO, Gluckman PD, et al. Oncogenic transformation of human mammary epithelial cells by autocrine human growth hormone. Cancer Res 2005;65:317-24.

130. Shafiei F, Rahnama F, Pawella L, Mitchell MD, Gluckman PD, et al. DNMT3A and DNMT3B mediate autocrine hGH repression of plakoglobin gene transcription and consequent phenotypic conversion of mammary carcinoma cells. Oncogene 2008;27:2602-12.

131. Wang JJ, Chong QY, Sun XB, You ML, Pandey V, et al. Autocrine hGH stimulates oncogenicity, epithelial-mesenchymal transition and cancer stem cell-like behavior in human colorectal carcinoma. Oncotarget 2017;8.

132. Basu R, Wu S, Kopchick J. Targeting growth hormone receptor in human melanoma cells attenuates tumor progression and epithelial mesenchymal transition via suppression of multiple oncogenic pathways. Oncotarget 2017;5.

133. Pandey V, Perry JK, Mohankumar KM, Kong XJ, Liu SM, et al. Autocrine human growth hormone stimulates oncogenicity of endometrial carcinoma cells. Endocrinology 2008;149:3909-19.

134. Chen Z, Shi T, Zhang L, Zhu P, Deng M, et al. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: a review of the past decade. Cancer Lett 2016;370:153-64.

135. Montanari F, Ecker GF. Prediction of drug-ABC-transporter interaction - recent advances and future challenges. Adv Drug Deliv Rev 2015;86:17-26.

136. Heimerl S, Bosserhoff AK, Langmann T, Ecker J, Schmitz G. Mapping ATP-binding cassette transporter gene expression profiles in melanocytes and melanoma cells. Melanoma Res 2007;17:265-73.

137. Robey RW, Pluchino KM, Hall MD, Fojo AT, Bates SE, et al. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer 2018;18:452-64.

138. Kathawala RJ, Gupta P, Ashby CR, Chen ZS. The modulation of ABC transporter-mediated multidrug resistance in cancer: a review of the past decade. Drug Resist Updat 2015;18:1-17.

139. Szakács G, Annereau JP, Lababidi S, Shankavaram U, Arciello A, et al. Predicting drug sensitivity and resistance. Cancer Cell 2004;6:129-37.

140. Dvorak P, Pesta M, Soucek P. ABC gene expression profiles have clinical importance and possibly form a new hallmark of cancer. Tumor Biol 2017;39:101042831769980.

141. Choi CH. ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal. Cancer Cell Int 2005;5:30.

142. Ejendal KFK, Hrycyna CA. Multidrug resistance and cancer: the role of the human ABC transporter ABCG2. Curr Protein Pept Sci 2002;3:503-11.

143. Jaramillo AC, Al Saig F, Cloos J, Jansen G, Peters GJ. How to overcome ATP-binding cassette drug efflux transporter-mediated drug resistance? Cancer Drug Resist 2018;1:6-29.

144. Chen KG, Valencia JC, Gillet JP, Hearing VJ, Gottesman MM. Involvement of ABC transporters in melanogenesis and the development of multidrug resistance of melanoma. Pigment Cell Melanoma Res 2009;22:740-9.

145. Chen KG, Valencia JC, Lai B, Zhang G, Paterson JK, et al. Melanosomal sequestration of cytotoxic drugs contributes to the intractability of malignant melanomas. Proc Natl Acad Sci 2006;103:9903-7.

146. Bougen NM, Yang T, Chen H, Lobie PE, Perry JK. Autocrine human growth hormone reduces mammary and endometrial carcinoma cell sensitivity to mitomycin C. Oncol Rep 2011;26:487-93.

147. Holtz AN, Yee D, Beckwith H. Abstract 5839: growth hormone receptor (GHR) expression confers resistance to ruxolitinib in endocrine-resistant breast cancer cells. Cancer Res 2018;78:5839.

148. Basu R, Baumgaertel N, Wu S, Kopchick JJ. Growth hormone receptor knockdown sensitizes human melanoma cells to chemotherapy by attenuating expression of ABC drug efflux pumps. Horm Cancer 2017;8:143-56.

149. Arumugam A, Subramani R, Nandy SB, Terreros D, Dwivedi AK, et al. Silencing growth hormone receptor inhibits estrogen receptor negative breast cancer through ATP-binding cassette sub-family G member 2. Exp Mol Med 2019;51:2.

150. Wu AML, Dalvi P, Lu X, Yang M, Riddick DS, et al. Induction of multidrug resistance transporter ABCG2 by prolactin in human breast cancer cells. Mol Pharmacol 2013;83:377-88.

151. Santisteban M. ABC transporters as molecular effectors of pancreatic oncogenic pathways: the hedgehog-GLI model. J Gastrointest Cancer 2010;41:153-8.

152. Fletcher JI, Haber M, Henderson MJ, Norris MD. ABC transporters in cancer: more than just drug efflux pumps. Nat Rev Cancer 2010;10:147-56.

153. Pahnke J, Langer O, Krohn M. Alzheimer’s and ABC transporters - new opportunities for diagnostics and treatment. Neurobiol Dis 2014;72:54-60.

154. Abuznait AH, Kaddoumi A. Role of ABC transporters in the pathogenesis of Alzheimer’s disease. ACS Chem Neurosci 2012;3:820-31.

155. Mahringer A, Fricker G. ABC transporters at the blood-brain barrier. Expert Opin Drug Metab Toxicol 2016;12:499-508.

156. Tarling EJ, de Aguiar Vallim TQ, Edwards PA. Role of ABC transporters in lipid transport and human disease. Trends Endocrinol Metab 2013;24:342-50.

157. Schumacher T, Benndorf RA. ABC transport proteins in cardiovascular disease-a brief summary. Molecules 2017;22.

158. Gottesman MM, Ambudkar SV. Overview: ABC transporters and human disease. J Bioenerg Biomembr 2001;33:453-8.

159. Stanton B. ABC transporters in liver, kidney, and intestine. Kidney Int 2002;62:1520-1.

160. Stefková J, Poledne R, Hubácek JA. ATP-binding cassette (ABC) transporters in human metabolism and diseases. Physiol Res 2004;53:235-43.

161. Batlle E, Clevers H. Cancer stem cells revisited. Nat Med 2017;23:1124-34.

162. Ciurea ME, Georgescu AM, Purcaru SO, Artene SA, Emami GH, et al. Cancer stem cells: biological functions and therapeutically targeting. Int J Mol Sci 2014;15:8169-85.

163. Phi LTH, Sari IN, Yang YG, Lee SH, Jun N, et al. Cancer stem cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment. Stem Cells Int 2018;2018:1-16.

164. Florea V, Majid SS, Kanashiro-Takeuchi RM, Cai RZ, Block NL, et al. Agonists of growth hormone-releasing hormone stimulate self-renewal of cardiac stem cells and promote their survival. Proc Natl Acad Sci 2014;111:17260-5.

165. Sackmann-Sala L, Guidotti JE, Goffin V. Minireview: prolactin regulation of adult stem cells. Mol Endocrinol 2015;29:667-81.

166. Sackmann-Sala L, Goffin V. Prolactin-induced prostate tumorigenesis. Adv Exp Med Biol 2015;846:221-42.

167. Neradugomma NK, Subramaniam D, Tawfik OW, Goffin V, Kumar TR, et al. Prolactin signaling enhances colon cancer stemness by modulating Notch signaling in a Jak2-STAT3/ERK manner. Carcinogenesis 2014;35:795-806.

168. Chen YJ, Zhang X, Wu ZS, Wang JJ, Lau AYC, et al. Autocrine human growth hormone stimulates the tumor initiating capacity and metastasis of estrogen receptor-negative mammary carcinoma cells. Cancer Lett 2015;365:182-9.

169. Lombardi S, Honeth G, Ginestier C, Shinomiya I, Marlow R, et al. Growth hormone is secreted by normal breast epithelium upon progesterone stimulation and increases proliferation of stem/progenitor cells. Stem Cell Reports 2014;2:780-93.

170. Chen YJ, You ML, Chong QY, Pandey V, Zhuang QS, et al. Autocrine human growth hormone promotes invasive and cancer stem cell-like behavior of hepatocellular carcinoma cells by STAT3 dependent inhibition of CLAUDIN-1 expression. Int J Mol Sci 2017;18:1274.

171. Chen HHW, Kuo MT. Improving radiotherapy in cancer treatment: Promises and challenges. Oncotarget 2017;8:62742-58.

172. Baskar R, Lee KA, Yeo R, Yeoh KW. Cancer and radiation therapy: current advances and future directions. Int J Med Sci 2012;9:193-9.

173. Kim BM, Hong Y, Lee S, Liu P, Lim JH, et al. Therapeutic implications for overcoming radiation resistance in cancer therapy. Int J Mol Sci 2015;16:26880-913.

174. Barker HE, Paget JTE, Khan AA, Harrington KJ. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Cancer 2015;15:409-25.

175. Willers H, Azzoli CG, Santivasi WL, Xia F. Basic mechanisms of therapeutic resistance to radiation and chemotherapy in lung cancer. Cancer J 2013;19:200-7.

176. Redelman D, Welniak LA, Taub D, Murphy WJ. Neuroendocrine hormones such as growth hormone and prolactin are integral members of the immunological cytokine network. Cell Immunol ;252:111-21.

177. Bougen NM, Steiner M, Pertziger M, Banerjee A, Brunet-Dunand SE, et al. Autocrine human GH promotes radioresistance in mammary and endometrial carcinoma cells. Endocr Relat Cancer 2012;19:625-44.

178. Prieto I, Gómez de Segura IA, García Grande A, García P, Carralero I, et al. Morphometric and proliferative effects of growth hormone on radiation enteritis in the rat. Rev Esp Enferm Dig 1998;90:163-73.

179. Lempereur L, Brambilla D, Maria Scoto G, D’Alcamo M, Goffin V, et al. Growth hormone protects human lymphocytes from irradiation-induced cell death. Br J Pharmacol 2003;138:1411-6.

180. Morante J, Vallejo-Cremades MT, Gómez-García L, Vázquez I, Gómez-de-Segura IA, et al. Differential action of growth hormone in irradiated tumoral and nontumoral intestinal tissue. Dig Dis Sci 2003;48:2159-66.

181. Caz V, Elvira M, Tabernero M, Grande AG, Lopez-Plaza B, et al. Growth hormone protects the intestine preserving radiotherapy efficacy on tumors: a short-term study. PLoS One 2015;10:e0144537.

182. Chen BJ, Deoliveira D, Spasojevic I, Sempowski GD, Jiang C, et al. Growth hormone mitigates against lethal irradiation and enhances hematologic and immune recovery in mice and nonhuman primates. PLoS One 2010;5:e11056.

183. Zhou D, Deoliveira D, Kang Y, Choi SS, Li Z, et al. Insulin-like growth factor 1 mitigates hematopoietic toxicity after lethal total body irradiation. Int J Radiat Oncol Biol Phys 2013;85:1141-8.

184. Wu XY, Chen C, Yao XQ, Cao QH, Xu Z, et al. Growth hormone protects colorectal cancer cells from radiation by improving the ability of DNA damage repair. Mol Med Rep 2014;10:486-90.

185. Evans A, Jamieson SMF, Liu DX, Wilson WR, Perry JK. Growth hormone receptor antagonism suppresses tumour regrowth after radiotherapy in an endometrial cancer xenograft model. Cancer Lett 2016;379:117-23.

186. Wu X, Wan M, Li G, Xu Z, Chen C, et al. Growth hormone receptor overexpression predicts response of rectal cancers to pre-operative radiotherapy. Eur J Cancer 2006;42:888-94.

187. Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 2014;15:786-801.

188. Burnier J V, Wang N, Michel RP, Hassanain M, Li S, et al. Type IV collagen-initiated signals provide survival and growth cues required for liver metastasis. Oncogene 2011;30:3766-83.

189. Jenkins MH, Croteau W, Mullins DW, Brinckerhoff CE. The BRAFV600E inhibitor, PLX4032, increases type I collagen synthesis in melanoma cells. Matrix Biol 2015;48:66-77.

190. Fang M, Yuan J, Peng C, Li Y. Collagen as a double-edged sword in tumor progression. Tumor Biol 2014;35:2871-82.

191. Rizwan A, Bulte C, Kalaichelvan A, Cheng M, Krishnamachary B, et al. Metastatic breast cancer cells in lymph nodes increase nodal collagen density. Sci Rep 2015;5:10002.

192. Gao H, Chakraborty G, Zhang Z, Akalay I, Gadiya M, et al. Multi-organ site metastatic reactivation mediated by non-canonical discoidin domain receptor 1 signaling. Cell 2016;166:47-62.

193. Januchowski R, Świerczewska M, Sterzyńska K, Wojtowicz K, Nowicki M, et al. Increased expression of several collagen genes is associated with drug resistance in ovarian cancer cell lines. J Cancer 2016;7:1295-310.

194. Doessing S, Heinemeier KM, Holm L, Mackey AL, Schjerling P, et al. Growth hormone stimulates the collagen synthesis in human tendon and skeletal muscle without affecting myofibrillar protein synthesis. J Physiol 2010;588:341-51.

195. An X, Sarmiento C, Tan T, Zhu H. Regulation of multidrug resistance by microRNAs in anti-cancer therapy. Acta Pharm Sin B 2017;7:38-51.

196. Zhang W, Qian P, Zhang X, Zhang M, Wang H, et al. Autocrine/paracrine human growth hormone-stimulated microRNA 96-182-183 cluster promotes epithelial-mesenchymal transition and invasion in breast cancer. J Biol Chem 2015;290:13812-29.

197. Ma Y, Liang AJ, Fan YP, Huang YR, Zhao XM, et al. Dysregulation and functional roles of miR-183-96-182 cluster in cancer cell proliferation, invasion and metastasis. Oncotarget 2016;7:42805-25.

198. Hao P, Waxman DJ. Functional roles of sex-biased, growth hormone-regulated microRNAs miR-1948 and miR-802 in young adult mouse liver. Endocrinology 2018;159:1377-92.

199. Wang D, Lu G, Shao Y, Xu D. microRNA-802 inhibits epithelial-mesenchymal transition through targeting flotillin-2 in human prostate cancer. Biosci Rep 2017;37.

200. Rodriguez-Antona C, Ingelman-Sundberg M. Cytochrome P450 pharmacogenetics and cancer. Oncogene 2006;25:1679-91.

201. Bruno RD, Njar VCO. Targeting cytochrome P450 enzymes: a new approach in anti-cancer drug development. Bioorg Med Chem 2007;15:5047-60.

202. Waxman DJ, Ram PA, Pampori NA, Shapiro BH. Growth hormone regulation of male-specific rat liver P450s 2A2 and 3A2: induction by intermittent growth hormone pulses in male but not female rats rendered growth hormone deficient by neonatal monosodium glutamate. Mol Pharmacol 1995;48:790-7.

203. Cheung NW, Liddle C, Coverdale S, Lou JC, Boyages SC. Growth hormone treatment increases cytochrome P450-mediated antipyrine clearance in man. J Clin Endocrinol Metab 1996;81:1999-2001.

204. Gil Berglund E, Johannsson G, Beck O, Bengtsson BA, Rane A. Growth hormone replacement therapy induces codeine clearance. Eur J Clin Invest 2002;32:507-12.

205. Bhatt AP, Redinbo MR, Bultman SJ. The role of the microbiome in cancer development and therapy. CA Cancer J Clin 2017;67:326-44.

206. Pouncey AL, Scott AJ, Alexander JL, Marchesi J, Kinross J. Gut microbiota, chemotherapy and the host: the influence of the gut microbiota on cancer treatment. Ecancermedicalscience 2018;12:868.

207. Fessler JL, Gajewski TF. The microbiota: a new variable impacting cancer treatment outcomes. Clin Cancer Res 2017;23:3229-31.

208. De Almeida CV, de Camargo MR, Russo E, Amedei A. Role of diet and gut microbiota on colorectal cancer immunomodulation. World J Gastroenterol 2018;25:151-62.

209. Rea D, Coppola G, Palma G, Barbieri A, Luciano A, et al. Microbiota effects on cancer: from risks to therapies. Oncotarget 2018;9.

210. Yan J, Charles JF. Gut Microbiota and IGF-1. Calcif Tissue Int 2018;102:406-14.

211. Friend KE. Cancer and the potential place for growth hormone receptor antagonist therapy. Growth Horm IGF Res 2001;11:S121-3.

212. Leporati P, Fonte R, de Martinis L, Zambelli A, Magri F, et al. A male patient with acromegaly and breast cancer: treating acromegaly to control tumor progression. BMC Cancer 2015;15:397.

213. Telleria CM. Drug repurposing for cancer therapy. J Cancer Sci Ther 2012;4:ix-xi.

214. Langdon CG, Platt JT, Means RE, Iyidogan P, Mamillapalli R, et al. Combinatorial screening of pancreatic adenocarcinoma reveals sensitivity to drug combinations including bromodomain inhibitor plus neddylation inhibitor. Mol Cancer Ther 2017;16:1041-53.

215. Nosengo N. Can you teach old drugs new tricks? Nature 2016;534:314-6.

216. Wu XY, Chen C, Yao XQ, Cao QH, Xu Z, et al. Growth hormone protects colorectal cancer cells from radiation by improving the ability of DNA damage repair. Mol Med Rep 2014;10:486-90.

Cancer Drug Resistance
ISSN 2578-532X (Online)
Follow Us


All published articles will preserved here permanently:


All published articles will preserved here permanently: