1. Bruix J, Sherman M. Management of hepatocellular carcinoma: an update. Hepatology 2011;53:1020-2.

2. Llovet JM, Bruix J. Molecular targeted therapies in hepatocellular carcinoma. Hepatology 2008;48:1312-27.

3. Yao S, Johnson C, Hu Q, Yan L, Liu B, et al. Differences in somatic mutation landscape of hepatocellular carcinoma in Asian American and European American populations. Oncotarget 2016;7:40491-9.

4. Witt-Kehati D, Fridkin A, Alaluf MB, Zemel R, Shlomai A. Inhibition of pMAPK14 overcomes resistance to sorafenib in hepatoma cells with hepatitis b virus. Transl Oncol 2018;11:511-7.

5. EASL. EASL clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol 2018;69:182-236.

6. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008;359:378-90.

7. Bruix J, Qin S, Merle P, Granito A, Huang YH, et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017;389:56-66.

8. Jindal A, Thadi A, Shailubhai K. Hepatocellular carcinoma: etiology and current and future drugs. J Clin Exp Hepatol 2019;9:221-32.

9. Macias RIR, Kornek M, Rodrigues PM, Paiva NA, Castro RE, et al. Diagnostic and prognostic biomarkers in cholangiocarcinoma. Liver Int 2019;39 Suppl 1:108-22.

10. Banales JM, Inarrairaegui M, Arbelaiz A, Milkiewicz P, Muntane J, et al. Serum metabolites as diagnostic biomarkers for cholangiocarcinoma, hepatocellular carcinoma, and primary sclerosing cholangitis. Hepatology 2018; doi: 10.1002/hep.30319.

11. Banales JM, Cardinale V, Carpino G, Marzioni M, Andersen JB, et al. Expert consensus document: cholangiocarcinoma: current knowledge and future perspectives consensus statement from the european network for the study of cholangiocarcinoma (ENS-CCA). Nat Rev Gastroenterol Hepatol 2016;13:261-80.

12. Marin JJG, Lozano E, Herraez E, Asensio M, Di Giacomo S, et al. Chemoresistance and chemosensitization in cholangiocarcinoma. Biochim Biophys Acta Mol Basis Dis 2018;1864:1444-53.

13. den Dunnen JT, Dalgleish R, Maglott DR, Hart RK, Greenblatt MS, et al. HGVS recommendations for the description of sequence variants: 2016 Update. Hum Mutat 2016;37:564-9.

14. Sprowl JA, Sparreboom A. Uptake carriers and oncology drug safety. Drug Metab Dispos 2014;42:611-22.

15. Zimmerman EI, Hu S, Roberts JL, Gibson AA, Orwick SJ, et al. Contribution of OATP1B1 and OATP1B3 to the disposition of sorafenib and sorafenib-glucuronide. Clin Cancer Res 2013;19:1458-66.

16. Gong IY, Kim RB. Impact of genetic variation in OATP transporters to drug disposition and response. Drug Metab Pharmacokinet 2013;28:4-18.

17. Bins S, Lenting A, El Bouazzaoui S, van Doorn L, Oomen-de Hoop E, et al. Polymorphisms in SLCO1B1 and UGT1A1 are associated with sorafenib-induced toxicity. Pharmacogenomics 2016;17:1483-90.

18. Levi F, Karaboue A, Saffroy R, Desterke C, Boige V, et al. Pharmacogenetic determinants of outcomes on triplet hepatic artery infusion and intravenous cetuximab for liver metastases from colorectal cancer (European trial OPTILIV, NCT00852228). Br J Cancer 2017;117:965-73.

19. Sakata T, Anzai N, Kimura T, Miura D, Fukutomi T, et al. Functional analysis of human organic cation transporter OCT3 (SLC22A3) polymorphisms. J Pharmacol Sci 2010;113:263-6.

20. Chen L, Pawlikowski B, Schlessinger A, More SS, Stryke D, et al. Role of organic cation transporter 3 (SLC22A3) and its missense variants in the pharmacologic action of metformin. Pharmacogenet Genomics 2010;20:687-99.

21. Wong AL, Yap HL, Yeo WL, Soong R, Ng SS, et al. Gemcitabine and platinum pathway pharmacogenetics in Asian breast cancer patients. Cancer Genomics Proteomics 2011;8:255-9.

22. Soo RA, Wang LZ, Ng SS, Chong PY, Yong WP, et al. Distribution of gemcitabine pathway genotypes in ethnic Asians and their association with outcome in non-small cell lung cancer patients. Lung Cancer 2009;63:121-7.

23. Joerger M, Burgers JA, Baas P, Doodeman VD, Smits PH, et al. Gene polymorphisms, pharmacokinetics, and hematological toxicity in advanced non-small-cell lung cancer patients receiving cisplatin/gemcitabine. Cancer Chemother Pharmacol 2012;69:25-33.

24. Herraez E, Lozano E, Macias RI, Vaquero J, Bujanda L, et al. Expression of SLC22A1 variants may affect the response of hepatocellular carcinoma and cholangiocarcinoma to sorafenib. Hepatology 2013;58:1065-73.

25. Pongmaneratanakul S, Tanasanvimon S, Pengsuparp T, Areepium N. Prevalence of CTR1 and ERCC1 Polymorphisms and Response of Biliary Tract Cancer to Gemcitabine-Platinum Chemotherapy. Asian Pac J Cancer Prev 2017;18:857-61.

26. Xu X, Duan L, Zhou B, Ma R, Zhou H, et al. Genetic polymorphism of copper transporter protein 1 is related to platinum resistance in Chinese non-small cell lung carcinoma patients. Clin Exp Pharmacol Physiol 2012;39:786-92.

27. Wlcek K, Svoboda M, Riha J, Zakaria S, Olszewski U, et al. The analysis of organic anion transporting polypeptide (OATP) mRNA and protein patterns in primary and metastatic liver cancer. Cancer Biol Ther 2011;11:801-11.

28. Hayer M, Bonisch H, Bruss M. Molecular cloning, functional characterization and genomic organization of four alternatively spliced isoforms of the human organic cation transporter 1 (hOCT1/SLC22A1). Ann Hum Genet 1999;63:473-82.

29. Makhtar SM, Husin A, Baba AA, Ankathil R. Genetic variations in influx transporter gene SLC22A1 are associated with clinical responses to imatinib mesylate among Malaysian chronic myeloid leukaemia patients. J Genet 2018;97:835-42.

30. Cargnin S, Ravegnini G, Soverini S, Angelini S, Terrazzino S. Impact of SLC22A1 and CYP3A5 genotypes on imatinib response in chronic myeloid leukemia: A systematic review and meta-analysis. Pharmacol Res 2018;131:244-54.

31. Koren-Michowitz M, Buzaglo Z, Ribakovsky E, Schwarz M, Pessach I, et al. OCT1 genetic variants are associated with long term outcomes in imatinib treated chronic myeloid leukemia patients. Eur J Haematol 2014;92:283-8.

32. Arimany-Nardi C, Montraveta A, Lee-Verges E, Puente XS, Koepsell H, et al. Human organic cation transporter 1 (hOCT1) as a mediator of bendamustine uptake and cytotoxicity in chronic lymphocytic leukemia (CLL) cells. Pharmacogenomics J 2015;15:363-71.

33. Geier A, Macias RI, Bettinger D, Weiss J, Bantel H, et al. The lack of the organic cation transporter OCT1 at the plasma membrane of tumor cells precludes a positive response to sorafenib in patients with hepatocellular carcinoma. Oncotarget 2017;8:15846-57.

34. Heise M, Lautem A, Knapstein J, Schattenberg JM, Hoppe-Lotichius M, et al. Downregulation of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) in human hepatocellular carcinoma and their prognostic significance. BMC Cancer 2012;12:109.

35. Lautem A, Heise M, Grasel A, Hoppe-Lotichius M, Weiler N, et al. Downregulation of organic cation transporter 1 (SLC22A1) is associated with tumor progression and reduced patient survival in human cholangiocellular carcinoma. Int J Oncol 2013;42:1297-304.

36. Guttmann S, Chandhok G, Groba SR, Niemietz C, Sauer V, et al. Organic cation transporter 3 mediates cisplatin and copper cross-resistance in hepatoma cells. Oncotarget 2018;9:743-54.

37. Gao PT, Cheng JW, Gong ZJ, Hu B, Sun YF, et al. Low SLC29A1 expression is associated with poor prognosis in patients with hepatocellular carcinoma. Am J Cancer Res 2017;7:2465-77.

38. Chen CF, Hsu EC, Lin KT, Tu PH, Chang HW, et al. Overlapping high-resolution copy number alterations in cancer genomes identified putative cancer genes in hepatocellular carcinoma. Hepatology 2010;52:1690-701.

39. Marin JJ, Romero MR, Briz O. Molecular bases of liver cancer refractoriness to pharmacological treatment. Curr Med Chem 2010;17:709-40.

40. Huang WC, Hsieh YL, Hung CM, Chien PH, Chien YF, Chen LC, Tu CY, Chen CH, Hsu SC, Lin YM, Chen YJ. BCRP/ABCG2 inhibition sensitizes hepatocellular carcinoma cells to sorafenib. PLoS One 2013;8:e83627.

41. Agarwal S, Sane R, Ohlfest JR, Elmquist WF. The role of the breast cancer resistance protein (ABCG2) in the distribution of sorafenib to the brain. J Pharmacol Exp Ther 2011;336:223-33.

42. Lagas JS, van Waterschoot RA, Sparidans RW, Wagenaar E, Beijnen JH, et al. Breast cancer resistance protein and P-glycoprotein limit sorafenib brain accumulation. Mol Cancer Ther 2010;9:319-26.

43. Tandia M, Mhiri A, Paule B, Saffroy R, Cailliez V, et al. Correlation between clinical response to sorafenib in hepatocellular carcinoma treatment and polymorphisms of P-glycoprotein (ABCB1) and of breast cancer resistance protein (ABCG2): monocentric study. Cancer Chemother Pharmacol 2017;79:759-66.

44. Marin JJ, Briz O, Perez MJ, Romero MR, Monte MJ. Hepatobiliary transporters in the pharmacology and toxicology of anticancer drugs. Front Biosci (Landmark Ed) 2009;14:4257-80.

45. Ng IO, Liu CL, Fan ST, Ng M. Expression of P-glycoprotein in hepatocellular carcinoma. A determinant of chemotherapy response. Am J Clin Pathol 2000;113:355-63.

46. Kato A, Miyazaki M, Ambiru S, Yoshitomi H, Ito H, et al. Multidrug resistance gene (MDR-1) expression as a useful prognostic factor in patients with human hepatocellular carcinoma after surgical resection. J Surg Oncol 2001;78:110-5.

47. Cao L, Duchrow M, Windhovel U, Kujath P, Bruch HP, et al. Expression of MDR1 mRNA and encoding P-glycoprotein in archival formalin-fixed paraffin-embedded gall bladder cancer tissues. Eur J Cancer 1998;34:1612-7.

48. Tepsiri N, Chaturat L, Sripa B, Namwat W, Wongkham S, et al. Drug sensitivity and drug resistance profiles of human intrahepatic cholangiocarcinoma cell lines. World J Gastroenterol 2005;11:2748-53.

49. Wolf SJ, Bachtiar M, Wang J, Sim TS, Chong SS, et al. An update on ABCB1 pharmacogenetics: insights from a 3D model into the location and evolutionary conservation of residues corresponding to SNPs associated with drug pharmacokinetics. Pharmacogenomics J 2011;11:315-25.

50. Baldissera VD, de Mattos AA, Coral GP, de Araujo FB, Marroni CA, et al. Evaluation of the C3435T polymorphism in the MDR1 gene in patients with hepatocellular carcinoma. Ann Hepatol 2012;11:899-906.

51. Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE, Calcagno AM, Ambudkar SV, Gottesman MM. A "silent" polymorphism in the MDR1 gene changes substrate specificity. Science 2007;315:525-8.

52. Su Z, Liu G, Fang T, Wang Y, Zhang H, et al. Silencing MRP1-4 genes by RNA interference enhances sensitivity of human hepatoma cells to chemotherapy. Am J Transl Res 2016;8:2790-802.

53. Korita PV, Wakai T, Shirai Y, Matsuda Y, Sakata J, et al. Multidrug resistance-associated protein 2 determines the efficacy of cisplatin in patients with hepatocellular carcinoma. Oncol Rep 2010;23:965-72.

54. Nies AT, Konig J, Pfannschmidt M, Klar E, Hofmann WJ, et al. Expression of the multidrug resistance proteins MRP2 and MRP3 in human hepatocellular carcinoma. Int J Cancer 2001;94:492-9.

55. Wakamatsu T, Nakahashi Y, Hachimine D, Seki T, Okazaki K. The combination of glycyrrhizin and lamivudine can reverse the cisplatin resistance in hepatocellular carcinoma cells through inhibition of multidrug resistance-associated proteins. Int J Oncol 2007;31:1465-72.

56. Martinez-Becerra P, Vaquero J, Romero MR, Lozano E, Anadon C, et al. No correlation between the expression of FXR and genes involved in multidrug resistance phenotype of primary liver tumors. Mol Pharm 2012;9:1693-704.

57. Zhao J, Yu BY, Wang DY, Yang JE. Promoter polymorphism of MRP1 associated with reduced survival in hepatocellular carcinoma. World J Gastroenterol 2010;16:6104-10.

58. Wang Z, Wang B, Tang K, Lee EJ, Chong SS, et al. A functional polymorphism within the MRP1 gene locus identified through its genomic signature of positive selection. Hum Mol Genet 2005;14:2075-87.

59. Wei D, Zhang H, Peng R, Huang C, Bai R. ABCC2 (1249G > A) polymorphism implicates altered transport activity for sorafenib. Xenobiotica 2017;47:1008-14.

60. Daly AK, Aithal GP, Leathart JB, Swainsbury RA, Dang TS, et al. Genetic susceptibility to diclofenac-induced hepatotoxicity: contribution of UGT2B7, CYP2C8, and ABCC2 genotypes. Gastroenterology 2007;132:272-81.

61. Nguyen TD, Markova S, Liu W, Gow JM, Baldwin RM, et al. Functional characterization of ABCC2 promoter polymorphisms and allele-specific expression. Pharmacogenomics J 2013;13:396-402.

62. Lang T, Hitzl M, Burk O, Mornhinweg E, Keil A, et al. Genetic polymorphisms in the multidrug resistance-associated protein 3 (ABCC3, MRP3) gene and relationship to its mRNA and protein expression in human liver. Pharmacogenetics 2004;14:155-64.

63. Edavana VK, Penney RB, Yao-Borengasser A, Starlard-Davenport A, Dhakal IB, et al. Effect of MRP2 and MRP3 Polymorphisms on Anastrozole Glucuronidation and MRP2 and MRP3 Gene Expression in Normal Liver Samples. Int J Cancer Res Mol Mech 2015;1.

64. Eclov RJ, Kim MJ, Chhibber A, Smith RP, Ahituv N, Kroetz DL. ABCG2 regulatory single-nucleotide polymorphisms alter in vivo enhancer activity and expression. Pharmacogenet Genomics 2017;27:454-63.

65. Hoblinger A, Grunhage F, Sauerbruch T, Lammert F. Association of the c.3972C>T variant of the multidrug resistance-associated protein 2 Gene (MRP2/ABCC2) with susceptibility to bile duct cancer. Digestion 2009;80:36-9.

66. Li Z, Xing X, Shan F, Li S, Xiao A, et al. ABCC2-24C > T polymorphism is associated with the response to platinum/5-Fu-based neoadjuvant chemotherapy and better clinical outcomes in advanced gastric cancer patients. Oncotarget 2016;7:55449-57.

67. Han ZG, Tao J, Yu TT, Shan L. Effect of GSTP1 and ABCC2 Polymorphisms on Treatment Response in Patients with Advanced Non-Small Cell Lung Cancer Undergoing Platinum-Based Chemotherapy: A Study in a Chinese Uygur Population. Med Sci Monit 2017;23:1999-2006.

68. Werk AN, Bruckmueller H, Haenisch S, Cascorbi I. Genetic variants may play an important role in mRNA-miRNA interaction: evidence for haplotype-dependent downregulation of ABCC2 (MRP2) by miRNA-379. Pharmacogenet Genomics 2014;24:283-91.

69. Shibayama Y, Nakano K, Maeda H, Taguchi M, Ikeda R, et al. Multidrug resistance protein 2 implicates anticancer drug-resistance to sorafenib. Biol Pharm Bull 2011;34:433-5.

70. Rau S, Autschbach F, Riedel HD, Konig J, Kulaksiz H, et al. Expression of the multidrug resistance proteins MRP2 and MRP3 in human cholangiocellular carcinomas. Eur J Clin Invest 2008;38:134-42.

71. Tomonari T, Takeishi S, Taniguchi T, Tanaka T, Tanaka H, et al. MRP3 as a novel resistance factor for sorafenib in hepatocellular carcinoma. Oncotarget 2016;7:7207-15.

72. Tsukamoto M, Sato S, Satake K, Miyake M, Nakagawa H. Quantitative Evaluation of Drug Resistance Profile of Cells Expressing Wild-Type or Genetic Polymorphic Variants of the Human ABC Transporter ABCC4. Int J Mol Sci 2017;18.

73. Lal S, Sutiman N, Ooi LL, Wong ZW, Wong NS, et al. Pharmacogenetics of ABCB5, ABCC5 and RLIP76 and doxorubicin pharmacokinetics in Asian breast cancer patients. Pharmacogenomics J 2017;17:337-43.

74. Krajinovic M, Elbared J, Drouin S, Bertout L, Rezgui A, et al. Polymorphisms of ABCC5 and NOS3 genes influence doxorubicin cardiotoxicity in survivors of childhood acute lymphoblastic leukemia. Pharmacogenomics J 2016;16:530-5.

75. Chen YL, Chen PM, Lin PY, Hsiau YT, Chu PY. ABCG2 Overexpression Confers Poor Outcomes in Hepatocellular Carcinoma of Elderly Patients. Anticancer Res 2016;36:2983-8.

76. Marin JJG, Lozano E, Briz O, Al-Abdulla R, Serrano MA, Macias RIR. Molecular Bases of Chemoresistance in Cholangiocarcinoma. Curr Drug Targets 2017;18:889-900.

77. Prasad B, Lai Y, Lin Y, Unadkat JD. Interindividual variability in the hepatic expression of the human breast cancer resistance protein (BCRP/ABCG2): effect of age, sex, and genotype. J Pharm Sci 2013;102:787-93.

78. Ahmed S, Zhou Z, Zhou J, Chen SQ. Pharmacogenomics of Drug Metabolizing Enzymes and Transporters: Relevance to Precision Medicine. Genomics Proteomics Bioinformatics 2016;14:298-313.

79. Zhou J, Wen Q, Li SF, Zhang YF, Gao N, et al. Significant change of cytochrome P450s activities in patients with hepatocellular carcinoma. Oncotarget 2016;7:50612-23.

80. Rochat B. Role of cytochrome P450 activity in the fate of anticancer agents and in drug resistance: focus on tamoxifen, paclitaxel and imatinib metabolism. Clin Pharmacokinet 2005;44:349-66.

81. Zhong JH, Xiang BD, Ma L, You XM, Li LQ, et al. Meta-analysis of microsomal epoxide hydrolase gene polymorphism and risk of hepatocellular carcinoma. PLoS One 2013;8:e57064.

82. Korobkova EA. Effect of natural polyphenols on CYP metabolism: implications for diseases. Chem Res Toxicol 2015;28:1359-90.

83. Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 2013;138:103-41.

84. Miyoshi Y, Taguchi T, Kim SJ, Tamaki Y, Noguchi S. Prediction of response to docetaxel by immunohistochemical analysis of CYP3A4 expression in human breast cancers. Breast Cancer 2005;12:11-5.

85. Yan T, Lu L, Xie C, Chen J, Peng X, et al. Severely impaired and dysregulated cytochrome p450 expression and activities in hepatocellular carcinoma: implications for personalized treatment in patients. Mol Cancer Ther 2015;14:2874-86.

86. Fushiya N, Takagi I, Nishino H, Akizuki S, Ohnishi A. Genetic polymorphisms of enzymes related to oral tegafur/uracil therapeutic efficacy in patients with hepatocellular carcinoma. Anticancer Drugs 2013;24:617-22.

87. Sugiyama E, Kaniwa N, Kim SR, Kikura-Hanajiri R, Hasegawa R, et al. Pharmacokinetics of gemcitabine in Japanese cancer patients: the impact of a cytidine deaminase polymorphism. J Clin Oncol 2007;25:32-42.

88. Fujimura T, Takahashi S, Urano T, Kumagai J, Murata T, et al. Expression of cytochrome P450 3A4 and its clinical significance in human prostate cancer. Urology 2009;74:391-7.

89. Oguro A, Sakamoto K, Suzuki S, Imaoka S. Contribution of hydrolase and phosphatase domains in soluble epoxide hydrolase to vascular endothelial growth factor expression and cell growth. Biol Pharm Bull 2009;32:1962-7.

90. Omiecinski CJ, Hassett C, Hosagrahara V. Epoxide hydrolase--polymorphism and role in toxicology. Toxicol Lett 2000;112-113:365-70.

91. Marin JJ, Briz O, Monte MJ, Blazquez AG, Macias RI. Genetic variants in genes involved in mechanisms of chemoresistance to anticancer drugs. Curr Cancer Drug Targets 2012;12:402-38.

92. Hassett C, Aicher L, Sidhu JS, Omiecinski CJ. Human microsomal epoxide hydrolase: genetic polymorphism and functional expression in vitro of amino acid variants. Hum Mol Genet 1994;3:421-8.

93. Jiang W, Lu Z, He Y, Diasio RB. Dihydropyrimidine dehydrogenase activity in hepatocellular carcinoma: implication in 5-fluorouracil-based chemotherapy. Clin Cancer Res 1997;3:395-9.

94. Walko CM, McLeod HL. Will we ever be ready for blood level-guided therapy? J Clin Oncol 2008;26:2078-9.

95. Etienne-Grimaldi MC, Boyer JC, Beroud C, Mbatchi L, van Kuilenburg A, et al. New advances in DPYD genotype and risk of severe toxicity under capecitabine. PLoS One 2017;12:e0175998.

96. Hiratsuka M, Yamashita H, Akai F, Hosono H, Hishinuma E, et al. Genetic polymorphisms of dihydropyrimidinase in a Japanese patient with capecitabine-induced toxicity. PLoS One 2015;10:e0124818.

97. Lin L, Sun J, Tan Y, Li Z, Kong F, et al. Prognostic implication of NQO1 overexpression in hepatocellular carcinoma. Hum Pathol 2017;69:31-7.

98. Buranrat B, Prawan A, Kukongviriyapan U, Kongpetch S, Kukongviriyapan V. Dicoumarol enhances gemcitabine-induced cytotoxicity in high NQO1-expressing cholangiocarcinoma cells. World J Gastroenterol 2010;16:2362-70.

99. Zhou JY, Shi R, Yu HL, Zheng WL, Ma WL. Association of NQO1 Pro187Ser polymorphism with the risks for colorectal cancer and colorectal adenoma: a meta-analysis. Int J Colorectal Dis 2012;27:1123-4.

100. Kolesar JM, Dahlberg SE, Marsh S, McLeod HL, Johnson DH, et al. The NQO1*2/*2 polymorphism is associated with poor overall survival in patients following resection of stages II and IIIa non-small cell lung cancer. Oncol Rep 2011;25:1765-72.

101. Mameri H, Bieche I, Meseure D, Marangoni E, Buhagiar-Labarchede G, et al. Cytidine deaminase deficiency reveals new therapeutic opportunities against cancer. Clin Cancer Res 2017;23:2116-26.

102. Carpi FM, Vincenzetti S, Ubaldi J, Pucciarelli S, Polzonetti V, et al. CDA gene polymorphisms and enzyme activity: genotype-phenotype relationship in an Italian-Caucasian population. Pharmacogenomics 2013;14:769-81.

103. Tibaldi C, Giovannetti E, Tiseo M, Leon LG, D'Incecco A, et al. Correlation of cytidine deaminase polymorphisms and activity with clinical outcome in gemcitabine-/platinum-treated advanced non-small-cell lung cancer patients. Ann Oncol 2012;23:670-7.

104. Coulibaly ST, Rossolillo P, Winter F, Kretzschmar FK, Braye M, et al. Potent Sensitisation of Cancer Cells to Anticancer Drugs by a Quadruple Mutant of the Human Deoxycytidine Kinase. PLoS One 2015;10:e0140741.

105. Akhdar H, El Shamieh S, Musso O, Desert R, Joumaa W, et al. The rs3957357C>T SNP in GSTA1 Is Associated with a Higher Risk of Occurrence of Hepatocellular Carcinoma in European Individuals. PLoS One 2016;11:e0167543.

106. Gamage N, Barnett A, Hempel N, Duggleby RG, Windmill KF, et al. Human sulfotransferases and their role in chemical metabolism. Toxicol Sci 2006;90:5-22.

107. Brandon EF, Sparidans RW, Meijerman I, Manzanares I, Beijnen JH, et al. In vitro characterization of the biotransformation of thiocoraline, a novel marine anti-cancer drug. Invest New Drugs 2004;22:241-51.

108. Fernandez-Santander A, Gaibar M, Novillo A, Romero-Lorca A, Rubio M, et al. Relationship between genotypes Sult1a2 and Cyp2d6 and tamoxifen metabolism in breast cancer patients. PLoS One 2013;8:e70183.

109. Lu L, Zhou J, Shi J, Peng XJ, Qi XX, et al. Drug-metabolizing activity, protein and gene expression of udp-glucuronosyltransferases are significantly altered in hepatocellular carcinoma patients. PLoS One 2015;10:e0127524.

110. Ye L, Yang X, Guo E, Chen W, Lu L, et al. Sorafenib metabolism is significantly altered in the liver tumor tissue of hepatocellular carcinoma patient. PLoS One 2014;9:e96664.

111. Hu DG, Mackenzie PI, Lu L, Meech R, McKinnon RA. Induction of human UDP-Glucuronosyltransferase 2B7 gene expression by cytotoxic anticancer drugs in liver cancer HepG2 cells. Drug Metab Dispos 2015;43:660-8.

112. Zahreddine HA, Borden KL. Molecular pathways: GLI1-induced drug glucuronidation in resistant cancer cells. Clin Cancer Res 2015;21:2207-10.

113. Marin JJ, Romero MR, Martinez-Becerra P, Herraez E, Briz O. Overview of the molecular bases of resistance to chemotherapy in liver and gastrointestinal tumours. Curr Mol Med 2009;9:1108-29.

114. Zheng YB, Zhan MX, Zhao W, Liu B, Huang JW, et al. The relationship of kinase insert domain receptor gene polymorphisms and clinical outcome in advanced hepatocellular carcinoma patients treated with sorafenib. Med Oncol 2014;31:209.

115. Jain L, Sissung TM, Danesi R, Kohn EC, Dahut WL, et al. Hypertension and hand-foot skin reactions related to VEGFR2 genotype and improved clinical outcome following bevacizumab and sorafenib. J Exp Clin Cancer Res 2010;29:95.

116. Hansen TF, Garm Spindler KL, Andersen RF, Lindebjerg J, Brandslund I, et al. The predictive value of genetic variations in the vascular endothelial growth factor A gene in metastatic colorectal cancer. Pharmacogenomics J 2011;11:53-60.

117. Orlandi P, Fontana A, Fioravanti A, Di Desidero T, Galli L, et al. VEGF-A polymorphisms predict progression-free survival among advanced castration-resistant prostate cancer patients treated with metronomic cyclophosphamide. Br J Cancer 2013;109:957-64.

118. Scartozzi M, Faloppi L, Svegliati Baroni G, Loretelli C, Piscaglia F, et al. VEGF and VEGFR genotyping in the prediction of clinical outcome for HCC patients receiving sorafenib: the ALICE-1 study. Int J Cancer 2014;135:1247-56.

119. Schulze K, Imbeaud S, Letouze E, Alexandrov LB, Calderaro J, et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat Genet 2015;47:505-11.

120. Robertson S, Hyder O, Dodson R, Nayar SK, Poling J, et al. The frequency of KRAS and BRAF mutations in intrahepatic cholangiocarcinomas and their correlation with clinical outcome. Hum Pathol 2013;44:2768-73.

121. Angkathunyakul N, Rosini F, Heaton N, Foskett P, Quaglia A. BRAF V600E mutation in biliary proliferations associated with alpha1-antitrypsin deficiency. Histopathology 2017;70:485-91.

122. Dow M, Pyke RM, Tsui BY, Alexandrov LB, Nakagawa H, et al. Integrative genomic analysis of mouse and human hepatocellular carcinoma. Proc Natl Acad Sci U S A 2018;115:E9879-E88.

123. Yamamoto M, Tanaka H, Xin B, Nishikawa Y, Yamazaki K, et al. Role of the BrafV637E mutation in hepatocarcinogenesis induced by treatment with diethylnitrosamine in neonatal B6C3F1 mice. Mol Carcinog 2017;56:478-88.

124. Crystal AS, Shaw AT, Sequist LV, Friboulet L, Niederst MJ, et al. Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science 2014;346:1480-6.

125. Bean J, Brennan C, Shih JY, Riely G, Viale A, et al. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci U S A 2007;104:20932-7.

126. Dong LQ, Shi Y, Ma LJ, Yang LX, Wang XY, et al. Spatial and temporal clonal evolution of intrahepatic cholangiocarcinoma. J Hepatol 2018;69:89-98.

127. Rad R, Cadinanos J, Rad L, Varela I, Strong A, et al. A genetic progression model of Braf(V600E)-induced intestinal tumorigenesis reveals targets for therapeutic intervention. Cancer Cell 2013;24:15-29.

128. Aboussekhra A, Biggerstaff M, Shivji MK, Vilpo JA, Moncollin V, et al. Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell 1995;80:859-68.

129. Zhou W, Gurubhagavatula S, Liu G, Park S, Neuberg DS, et al. Excision repair cross-complementation group 1 polymorphism predicts overall survival in advanced non-small cell lung cancer patients treated with platinum-based chemotherapy. Clin Cancer Res 2004;10:4939-43.

130. Gurubhagavatula S, Liu G, Park S, Zhou W, Su L, et al. XPD and XRCC1 genetic polymorphisms are prognostic factors in advanced non-small-cell lung cancer patients treated with platinum chemotherapy. J Clin Oncol 2004;22:2594-601.

131. Yang Z, Zhao J. Effect of APE1 and XRCC1 gene polymorphism on susceptibility to hepatocellular carcinoma and sensitivity to cisplatin. Int J Clin Exp Med 2015;8:9931-6.

132. Golan T, Raitses-Gurevich M, Kelley RK, Bocobo AG, Borgida A, et al. Overall Survival and Clinical Characteristics of BRCA-Associated Cholangiocarcinoma: A Multicenter Retrospective Study. Oncologist 2017;22:804-10.

133. Wardell CP, Fujita M, Yamada T, Simbolo M, Fassan M, et al. Genomic characterization of biliary tract cancers identifies driver genes and predisposing mutations. J Hepatol 2018;68:959-69.

134. Zimmer AS, Gillard M, Lipkowitz S, Lee JM. Update on PARP Inhibitors in Breast Cancer. Curr Treat Options Oncol 2018;19:21.

135. Ueda S, Shirabe K, Morita K, Umeda K, Kayashima H, et al. Evaluation of ERCC1 expression for cisplatin sensitivity in human hepatocellular carcinoma. Ann Surg Oncol 2011;18:1204-11.

136. Fautrel A, Andrieux L, Musso O, Boudjema K, Guillouzo A, et al. Overexpression of the two nucleotide excision repair genes ERCC1 and XPC in human hepatocellular carcinoma. J Hepatol 2005;43:288-93.

137. Van Allen EM, Mouw KW, Kim P, Iyer G, Wagle N, et al. Somatic ERCC2 mutations correlate with cisplatin sensitivity in muscle-invasive urothelial carcinoma. Cancer Discov 2014;4:1140-53.

138. Sishc BJ, Davis AJ. The role of the core non-homologous end joining factors in carcinogenesis and cancer. Cancers (Basel) 2017;9:E81.

139. Yang S, Wang XQ. XLF-mediated NHEJ activity in hepatocellular carcinoma therapy resistance. BMC Cancer 2017;17:344.

140. Schulze K, Nault JC, Villanueva A. Genetic profiling of hepatocellular carcinoma using next-generation sequencing. J Hepatol 2016;65:1031-42.

141. Bullock AN, Fersht AR. Rescuing the function of mutant p53. Nat Rev Cancer 2001;1:68-76.

142. Ye S, Zhao XY, Hu XG, Li T, Xu QR, et al. TP53 and RET may serve as biomarkers of prognostic evaluation and targeted therapy in hepatocellular carcinoma. Oncol Rep 2017;37:2215-26.

143. Woo HG, Wang XW, Budhu A, Kim YH, Kwon SM, et al. Association of TP53 mutations with stem cell-like gene expression and survival of patients with hepatocellular carcinoma. Gastroenterology 2011;140:1063-70.

144. Chan KT, Lung ML. Mutant p53 expression enhances drug resistance in a hepatocellular carcinoma cell line. Cancer Chemother Pharmacol 2004;53:519-26.

145. Melino G. p63 is a suppressor of tumorigenesis and metastasis interacting with mutant p53. Cell Death Differ 2011;18:1487-99.

146. Melino G, Bernassola F, Ranalli M, Yee K, Zong WX, et al. p73 Induces apoptosis via PUMA transactivation and Bax mitochondrial translocation. J Biol Chem 2004;279:8076-83.

147. Gonzalez R, De la Rosa AJ, Rufini A, Rodriguez-Hernandez MA, Navarro-Villaran E, et al. Role of p63 and p73 isoforms on the cell death in patients with hepatocellular carcinoma submitted to orthotopic liver transplantation. PLoS One 2017;12:e0174326.

148. Mundt HM, Stremmel W, Melino G, Krammer PH, Schilling T, et al. Dominant negative (DeltaN) p63alpha induces drug resistance in hepatocellular carcinoma by interference with apoptosis signaling pathways. Biochem Biophys Res Commun 2010;396:335-41.

149. Kayhanian H, Smyth EC, Braconi C. Emerging molecular targets and therapy for cholangiocarcinoma. World J Gastrointest Oncol 2017;9:268-80.

150. Nutthasirikul N, Limpaiboon T, Leelayuwat C, Patrakitkomjorn S, Jearanaikoon P. Ratio disruption of the 133p53 and TAp53 isoform equilibrium correlates with poor clinical outcome in intrahepatic cholangiocarcinoma. Int J Oncol 2013;42:1181-8.

151. Nutthasirikul N, Hahnvajanawong C, Techasen A, Limpaiboon T, Leelayuwat C, et al. Targeting the 133p53 isoform can restore chemosensitivity in 5-fluorouracil-resistant cholangiocarcinoma cells. Int J Oncol 2015;47:2153-64.

152. Ahn DH, Javle M, Ahn CW, Jain A, Mikhail S, et al. Next-generation sequencing survey of biliary tract cancer reveals the association between tumor somatic variants and chemotherapy resistance. Cancer 2016;122:3657-66.

153. Namwat N, Amimanan P, Loilome W, Jearanaikoon P, Sripa B, et al. Characterization of 5-fluorouracil-resistant cholangiocarcinoma cell lines. Chemotherapy 2008;54:343-51.

154. Soung YH, Lee JW, Kim SY, Sung YJ, Park WS, et al. Caspase-8 gene is frequently inactivated by the frameshift somatic mutation 1225_1226delTG in hepatocellular carcinomas. Oncogene 2005;24:141-7.

155. Ahn SM, Jang SJ, Shim JH, Kim D, Hong SM, et al. Genomic portrait of resectable hepatocellular carcinomas: implications of RB1 and FGF19 aberrations for patient stratification. Hepatology 2014;60:1972-82.

156. Wattanawongdon W, Hahnvajanawong C, Namwat N, Kanchanawat S, Boonmars T, Jearanaikoon P, et al. Establishment and characterization of gemcitabine-resistant human cholangiocarcinoma cell lines with multidrug resistance and enhanced invasiveness. Int J Oncol 2015;47:398-410.

157. Wang Z, Sheng YY, Gao XM, Wang CQ, Wang XY, et al. Beta-catenin mutation is correlated with a favorable prognosis in patients with hepatocellular carcinoma. Mol Clin Oncol 2015;3:936-40.

158. Hsu HC, Jeng YM, Mao TL, Chu JS, Lai PL, et al. Beta-catenin mutations are associated with a subset of low-stage hepatocellular carcinoma negative for hepatitis B virus and with favorable prognosis. Am J Pathol 2000;157:763-70.

159. Nhieu JT, Renard CA, Wei Y, Cherqui D, Zafrani ES, et al. Nuclear accumulation of mutated beta-catenin in hepatocellular carcinoma is associated with increased cell proliferation. Am J Pathol 1999;155:703-10.

160. Inagawa S, Itabashi M, Adachi S, Kawamoto T, Hori M, et al. Expression and prognostic roles of beta-catenin in hepatocellular carcinoma: correlation with tumor progression and postoperative survival. Clin Cancer Res 2002;8:450-6.

161. Kan Z, Zheng H, Liu X, Li S, Barber TD, et al. Whole-genome sequencing identifies recurrent mutations in hepatocellular carcinoma. Genome Res 2013;23:1422-33.

162. Yokoyama M, Ohnishi H, Ohtsuka K, Matsushima S, Ohkura Y, et al. KRAS mutation as a potential prognostic biomarker of biliary tract cancers. Jpn Clin Med 2016;7:33-9.

163. Yeung Y, Lau DK, Chionh F, Tran H, Tse JWT, et al. K-Ras mutation and amplification status is predictive of resistance and high basal pAKT is predictive of sensitivity to everolimus in biliary tract cancer cell lines. Mol Oncol 2017;11:1130-42.

164. Yu C, Wang X, Huang L, Tong Y, Chen L, et al. Deciphering the spectrum of mitochondrial DNA mutations in hepatocellular carcinoma using high-throughput sequencing. Gene Expr 2018;18:125-34.

165. Kawamura N, Nagai H, Bando K, Koyama M, Matsumoto S, et al. PTEN/MMAC1 mutations in hepatocellular carcinomas: somatic inactivation of both alleles in tumors. Jpn J Cancer Res 1999;90:413-8.

166. Fujiwara Y, Hoon DS, Yamada T, Umeshita K, Gotoh M, et al. PTEN / MMAC1 mutation and frequent loss of heterozygosity identified in chromosome 10q in a subset of hepatocellular carcinomas. Jpn J Cancer Res 2000;91:287-92.

167. Ho DWH, Chan LK, Chiu YT, Xu IMJ, Poon RTP, et al. TSC1/2 mutations define a molecular subset of HCC with aggressive behaviour and treatment implication. Gut 2017;66:1496-506.

168. Galmarini CM, Bouchet BP, Audoynaud C, Lamblot C, Falette N, et al. A p21/WAF1 mutation favors the appearance of drug resistance to paclitaxel in human noncancerous epithelial mammary cells. Int J Cancer 2006;119:60-6.

169. Fulda S. Tumor resistance to apoptosis. Int J Cancer 2009;124:511-5.

170. Li M, Wu XM, Gao J, Yang F, Zhang CL, et al. Mutations in the P10 region of procaspase-8 lead to chemotherapy resistance in acute myeloid leukemia by impairing procaspase-8 dimerization. Cell Death Dis 2018;9:516.

171. Zhou L, Huang Y, Li J, Wang Z. The mTOR pathway is associated with the poor prognosis of human hepatocellular carcinoma. Med Oncol 2010;27:255-61.

172. Tanaka Y, Kanai F, Tada M, Asaoka Y, Guleng B, et al. Absence of PIK3CA hotspot mutations in hepatocellular carcinoma in Japanese patients. Oncogene 2006;25:2950-2.

173. Lee JW, Soung YH, Kim SY, Lee HW, Park WS, et al. PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas. Oncogene 2005;24:1477-80.

174. Kudo Y, Tanaka Y, Tateishi K, Yamamoto K, Yamamoto S, et al. Altered composition of fatty acids exacerbates hepatotumorigenesis during activation of the phosphatidylinositol 3-kinase pathway. J Hepatol 2011;55:1400-8.

175. Dogruluk T, Tsang YH, Espitia M, Chen F, Chen T, et al. Identification of Variant-Specific Functions of PIK3CA by Rapid Phenotyping of Rare Mutations. Cancer Res 2015;75:5341-54.

176. Chen KF, Chen HL, Tai WT, Feng WC, Hsu CH, et al. Activation of phosphatidylinositol 3-kinase/Akt signaling pathway mediates acquired resistance to sorafenib in hepatocellular carcinoma cells. J Pharmacol Exp Ther 2011;337:155-61.

177. Wang L, Wang WL, Zhang Y, Guo SP, Zhang J, et al. Epigenetic and genetic alterations of PTEN in hepatocellular carcinoma. Hepatol Res 2007;37:389-96.

178. Zhou Q, Lui VW, Yeo W. Targeting the PI3K/Akt/mTOR pathway in hepatocellular carcinoma. Future Oncol 2011;7:1149-67.

179. Huynh H, Hao HX, Chan SL, Chen D, Ong R, et al. Loss of Tuberous Sclerosis Complex 2 (TSC2) Is Frequent in Hepatocellular Carcinoma and Predicts Response to mTORC1 Inhibitor Everolimus. Mol Cancer Ther 2015;14:1224-35.

180. Tai WT, Cheng AL, Shiau CW, Liu CY, Ko CH, et al. Dovitinib induces apoptosis and overcomes sorafenib resistance in hepatocellular carcinoma through SHP-1-mediated inhibition of STAT3. Mol Cancer Ther 2012;11:452-63.

181. Yang S, Luo C, Gu Q, Xu Q, Wang G, et al. Activating JAK1 mutation may predict the sensitivity of JAK-STAT inhibition in hepatocellular carcinoma. Oncotarget 2016;7:5461-9.

182. Rao CV, Asch AS, Yamada HY. Frequently mutated genes/pathways and genomic instability as prevention targets in liver cancer. Carcinogenesis 2017;38:2-11.

183. Ou DL, Lee BS, Chang YC, Lin LI, Liou JY, et al. Potentiating the efficacy of molecular targeted therapy for hepatocellular carcinoma by inhibiting the insulin-like growth factor pathway. PLoS One 2013;8:e66589.

184. Tovar V, Cornella H, Moeini A, Vidal S, Hoshida Y, et al. Tumour initiating cells and IGF/FGF signalling contribute to sorafenib resistance in hepatocellular carcinoma. Gut 2017;66:530-40.

185. Lee YI, Han YJ, Lee SY, Park SK, Park YJ, et al. Activation of insulin-like growth factor II signaling by mutant type p53: physiological implications for potentiation of IGF-II signaling by p53 mutant 249. Mol Cell Endocrinol 2003;203:51-63.

186. Huang WC, Tsai CC, Chan CC. Mutation analysis and copy number changes of KRAS and BRAF genes in Taiwanese cases of biliary tract cholangiocarcinoma. J Formos Med Assoc 2017;116:464-8.

187. Xu RF, Sun JP, Zhang SR, Zhu GS, Li LB, et al. KRAS and PIK3CA but not BRAF genes are frequently mutated in Chinese cholangiocarcinoma patients. Biomed Pharmacother 2011;65:22-6.

188. Scheffzek K, Ahmadian MR, Kabsch W, Wiesmuller L, Lautwein A, et al. The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 1997;277:333-8.

189. Rashid A, Ueki T, Gao YT, Houlihan PS, Wallace C, et al. K-ras mutation, p53 overexpression, and microsatellite instability in biliary tract cancers: a population-based study in China. Clin Cancer Res 2002;8:3156-63.

190. Yin PH, Wu CC, Lin JC, Chi CW, Wei YH, et al. Somatic mutations of mitochondrial genome in hepatocellular carcinoma. Mitochondrion 2010;10:174-82.

191. Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell 2008;132:27-42.

192. Sui X, Chen R, Wang Z, Huang Z, Kong N, et al. Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death Dis 2013;4:e838.

193. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646-74.

194. Leyva-Illades D, McMillin M, Quinn M, Demorrow S. Cholangiocarcinoma pathogenesis: Role of the tumor microenvironment. Transl Gastrointest Cancer 2012;1:71-80.

195. Yamada S, Okumura N, Wei L, Fuchs BC, Fujii T, et al. Epithelial to mesenchymal transition is associated with shorter disease-free survival in hepatocellular carcinoma. Ann Surg Oncol 2014;21:3882-90.

196. Giannelli G, Koudelkova P, Dituri F, Mikulits W. Role of epithelial to mesenchymal transition in hepatocellular carcinoma. J Hepatol 2016;65:798-808.

197. Kong P, Christia P, Saxena A, Su Y, Frangogiannis NG. Lack of specificity of fibroblast-specific protein 1 in cardiac remodeling and fibrosis. Am J Physiol Heart Circ Physiol 2013;305:H1363-72.

198. Kremmer E, Thierfelder S, Kummer U, Lederer R, Mysliwietz J. Neutralization of immunosuppression by antibodies against variable as well as constant regions of monoclonal anti-Thy-1 xenoantibodies and their ability to be suppressed by initial T cell depletion. Transplantation 1989;47:641-6.

199. Vaquero J, Guedj N, Claperon A, Nguyen Ho-Bouldoires TH, Paradis V, et al. Epithelial-mesenchymal transition in cholangiocarcinoma: from clinical evidence to regulatory networks. J Hepatol 2017;66:424-41.

200. Araki K, Shimura T, Suzuki H, Tsutsumi S, Wada W, et al. E/N-cadherin switch mediates cancer progression via TGF-beta-induced epithelial-to-mesenchymal transition in extrahepatic cholangiocarcinoma. Br J Cancer 2011;105:1885-93.

201. Sheng L, Zhang S, Xu H. Effect of slug-mediated down-regulation of e-cadherin on invasiveness and metastasis of anaplastic thyroid cancer cells. Med Sci Monit 2017;23:138-43.

202. Endo K, Ashida K, Miyake N, Terada T. E-cadherin gene mutations in human intrahepatic cholangiocarcinoma. J Pathol 2001;193:310-7.

203. Lee S, Kim WH, Jung HY, Yang MH, Kang GH. Aberrant CpG island methylation of multiple genes in intrahepatic cholangiocarcinoma. Am J Pathol 2002;161:1015-22.

204. Yang B, House MG, Guo M, Herman JG, Clark DP. Promoter methylation profiles of tumor suppressor genes in intrahepatic and extrahepatic cholangiocarcinoma. Mod Pathol 2005;18:412-20.

205. Yamada D, Kobayashi S, Wada H, Kawamoto K, Marubashi S, et al. Role of crosstalk between interleukin-6 and transforming growth factor-beta 1 in epithelial-mesenchymal transition and chemoresistance in biliary tract cancer. Eur J Cancer 2013;49:1725-40.

206. Zhang Y, Zeng S, Ma J, Deng G, Qu Y, et al. Nestin overexpression in hepatocellular carcinoma associates with epithelial-mesenchymal transition and chemoresistance. J Exp Clin Cancer Res 2016;35:111.

207. Warzecha CC, Jiang P, Amirikian K, Dittmar KA, Lu H, et al. An ESRP-regulated splicing programme is abrogated during the epithelial-mesenchymal transition. EMBO J 2010;29:3286-300.

208. Brown RL, Reinke LM, Damerow MS, Perez D, Chodosh LA, et al. CD44 splice isoform switching in human and mouse epithelium is essential for epithelial-mesenchymal transition and breast cancer progression. J Clin Invest 2011;121:1064-74.

209. Shapiro IM, Cheng AW, Flytzanis NC, Balsamo M, Condeelis JS, et al. An EMT-driven alternative splicing program occurs in human breast cancer and modulates cellular phenotype. PLoS Genet 2011;7:e1002218.

Cancer Drug Resistance
ISSN 2578-532X (Online)


All published articles will preserved here permanently:


All published articles will preserved here permanently: