1. Pui CH, Evans WE. A 50-year journey to cure childhood acute lymphoblastic leukemia. Semin Hematol 2013;50:185-96.

2. Gervasini G, Vagace JM. Impact of genetic polymorphisms on chemotherapy toxicity in childhood acute lymphoblastic leukemia. Front Genet 2012;3:249.

3. Asselin BL, Ryan D, Frantz CN, Bernal SD, Leavitt P, et al. In vitro and in vivo killing of acute lymphoblastic leukemia cells by L-asparaginase. Cancer Res 1989;49:4363-8.

4. Fernandez CA, Smith C, Yang W, Date M, Bashford D, et al. HLA-DRB1*07:01 is associated with a higher risk of asparaginase allergies. Blood 2014;124:1266-76.

5. Mei L, Ontiveros EP, Griffiths EA, Thompson JE, Wang ES, et al. Pharmacogenetics predictive of response and toxicity in acute lymphoblastic leukemia therapy. Blood Rev 2015;29:243-9.

6. Alachkar H, Fulton N, Sanford B, Malnassy G, Mutonga M, et al. Expression and polymorphism (rs4880) of mitochondrial superoxide dismutase (SOD2) and asparaginase induced hepatotoxicity in adult patients with acute lymphoblastic leukemia. Pharmacogenomics J 2017;17:274-9.

7. Paugh SW, Stocco G, Evans WE. Pharmacogenomics in pediatric leukemia. Curr Opin Pediatr 2010;22:703-10.

8. Lopez-Santillan M, Iparraguirre L, Martin-Guerrero I, Gutierrez-Camino A, Garcia-Orad A. Review of pharmacogenetics studies of L-asparaginase hypersensitivity in acute lymphoblastic leukemia points to variants in the GRIA1 gene. Drug Metab Pers Ther 2017;32:1-9.

9. Kutszegi N, Semsei AF, Gezsi A, Sagi JC, Nagy V, et al. Subgroups of paediatric acute lymphoblastic leukaemia might differ significantly in genetic predisposition to asparaginase hypersensitivity. PLoS One 2015;10:e0140136.

10. Ben Tanfous M, Sharif-Askari B, Ceppi F, Laaribi H, Gagne V, et al. Polymorphisms of asparaginase pathway and asparaginase-related complications in children with acute lymphoblastic leukemia. Clin Cancer Res 2015;21:329-34.

11. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin 2013;63:11-30.

12. Schmiegelow K, Muller K, Mogensen SS, Mogensen PR, Wolthers BO, et al. Non-infectious chemotherapy-associated acute toxicities during childhood acute lymphoblastic leukemia therapy. F1000Res 2017;6:444.

13. Pui CH, Mullighan CG, Evans WE, Relling MV. Pediatric acute lymphoblastic leukemia: where are we going and how do we get there? Blood 2012;120:1165-74.

14. Cheok MH, Pottier N, Kager L, Evans WE. Pharmacogenetics in acute lymphoblastic leukemia. Semin Hematol 2009;46:39-51.

15. Wolthers BO, Frandsen TL, Abrahamsson J, Albertsen BK, Helt LR, et al. Asparaginase-associated pancreatitis: a study on phenotype and genotype in the NOPHO ALL2008 protocol. Leukemia 2017;31:325-32.

16. Zhang G, Nebert DW. Personalized medicine: genetic risk prediction of drug response. Pharmacol Ther 2017;175:75-90.

17. Abaji R, Krajinovic M. Thiopurine S-methyltransferase polymorphisms in acute lymphoblastic leukemia, inflammatory bowel disease and autoimmune disorders: influence on treatment response. Pharmgenomics Pers Med 2017;10:143-56.

18. Rousseau J, Gagne V, Labuda M, Beaubois C, Sinnett D, et al. ATF5 polymorphisms influence ATF function and response to treatment in children with childhood acute lymphoblastic leukemia. Blood 2011;118:5883-90.

19. Chen SH, Yang W, Fan Y, Stocco G, Crews KR, et al. A genome-wide approach identifies that the aspartate metabolism pathway contributes to asparaginase sensitivity. Leukemia 2011;25:66-74.

20. Aslanian AM, Kilberg MS. Multiple adaptive mechanisms affect asparagine synthetase substrate availability in asparaginase-resistant MOLT-4 human leukaemia cells. Biochem J 2001;358:59-67.

21. Sugimoto K, Suzuki HI, Fujimura T, Ono A, Kaga N, et al. A clinically attainable dose of L-asparaginase targets glutamine addiction in lymphoid cell lines. Cancer Sci 2015;106:1534-43.

22. Pui CH, Thiel E. Central nervous system disease in hematologic malignancies: historical perspective and practical applications. Semin Oncol 2009;36:S2-16.

23. Tram Henriksen L, Gottschalk Hojfeldt S, Schmiegelow K, Frandsen TL, Skov Wehner P, et al. Prolonged first-line PEG-asparaginase treatment in pediatric acute lymphoblastic leukemia in the NOPHO ALL2008 protocol-Pharmacokinetics and antibody formation. Pediatr Blood Cancer 2017;64.

24. Nguyen HA, Su Y, Zhang JY, et al. A Novel l-Asparaginase with low l-Glutaminase Coactivity Is Highly Efficacious against Both T- and B-cell Acute Lymphoblastic Leukemias In Vivo. Cancer Res 2018;78:1549-60.

25. Chen SH, Pei D, Yang W, Cheng C, Jeha S, et al. Genetic variations in GRIA1 on chromosome 5q33 related to asparaginase hypersensitivity. Clin Pharmacol Ther 2010;88:191-6.

26. Kawedia JD, Kaste SC, Pei D, Panetta JC, Cai X, et al. Pharmacokinetic, pharmacodynamic, and pharmacogenetic determinants of osteonecrosis in children with acute lymphoblastic leukemia. Blood 2011;117:2340-7. quiz 556

27. Kawedia JD, Liu C, Pei D, Cheng C, Fernandez CA, et al. Dexamethasone exposure and asparaginase antibodies affect relapse risk in acute lymphoblastic leukemia. Blood 2012;119:1658-64.

28. Liu C, Janke LJ, Kawedia JD, Ramsey LB, Cai X, et al. Asparaginase potentiates glucocorticoid-induced osteonecrosis in a mouse model. PLoS One 2016;11:e0151433.

29. Castro-Pastrana LI, Ghannadan R, Rieder MJ, Dahlke E, Hayden M, et al. Cutaneous adverse drug reactions in children: an analysis of reports from the Canadian Pharmacogenomics Network for Drug Safety (CPNDS). J Popul Ther Clin Pharmacol 2011;18:e106-20.

30. Fernandez CA, Smith C, Yang W, Mullighan CG, Qu C, et al. Genome-wide analysis links NFATC2 with asparaginase hypersensitivity. Blood 2015;126:69-75.

31. Rajic V, Debeljak M, Goricar K, Jazbec J. Polymorphisms in GRIA1 gene are a risk factor for asparaginase hypersensitivity during the treatment of childhood acute lymphoblastic leukemia. Leuk Lymphoma 2015;56:3103-8.

32. Kutszegi N, Yang X, Gezsi A, et al. HLA-DRB1*07:01-HLA-DQA1*02:01-HLA-DQB1*02:02 haplotype is associated with a high risk of asparaginase hypersensitivity in acute lymphoblastic leukemia. Haematologica 2017;102:1578-86.

33. Hojfeldt SG, Wolthers BO, Tulstrup M, et al. Genetic predisposition to PEG-asparaginase hypersensitivity in children treated according to NOPHO ALL2008. Br J Haematol 2019;184:405-17.

34. Kumar S, Ooi CY, Werlin S, Abu-El-Haija M, Barth B, et al. Risk factors associated with pediatric acute recurrent and chronic pancreatitis: lessons from INSPPIRE. JAMA Pediatr 2016;170:562-9.

35. Liu C, Yang W, Devidas M, Cheng C, Pei D, et al. Clinical and genetic risk factors for acute pancreatitis in patients with acute lymphoblastic leukemia. J Clin Oncol 2016;34:2133-40.

36. Witt H, Beer S, Rosendahl J, Chen JM, Chandak GR, et al. Variants in CPA1 are strongly associated with early onset chronic pancreatitis. Nat Genet 2013;45:1216-20.

37. Derikx MH, Kovacs P, Scholz M, Masson E, Chen JM, et al. Polymorphisms at PRSS1-PRSS2 and CLDN2-MORC4 loci associate with alcoholic and non-alcoholic chronic pancreatitis in a European replication study. Gut 2015;64:1426-33.

38. Lee YJ, Kim KM, Choi JH, Lee BH, Kim GH, et al. High incidence of PRSS1 and SPINK1 mutations in Korean children with acute recurrent and chronic pancreatitis. J Pediatr Gastroenterol Nutr 2011;52:478-81.

39. Sobczynska-Tomaszewska A, Bak D, Oralewska B, Oracz G, Norek A, et al. Analysis of CFTR, SPINK1, PRSS1 and AAT mutations in children with acute or chronic pancreatitis. J Pediatr Gastroenterol Nutr 2006;43:299-306.

40. Tanaka Y, Urayama KY, Kawaguchi T, Mori M, Hasegawa D, et al. The association between L-asparaginase hypersensitivity and genetic variants in Japanese childhood ALL patients. Blood 2016;128:5141.

41. Abaji R, Gagne V, Xu CJ, Spinella JF, Ceppi F, et al. Whole-exome sequencing identified genetic risk factors for asparaginase-related complications in childhood ALL patients. Oncotarget 2017;8:43752-67.

42. Karol SE, Larsen E, Cheng C, Cao X, Yang W, et al. Genetics of ancestry-specific risk for relapse in acute lymphoblastic leukemia. Leukemia 2017;31:1325-32.

43. Place AE, Stevenson KE, Vrooman LM, Harris MH, Hunt SK, et al. Intravenous pegylated asparaginase versus intramuscular native Escherichia coli L-asparaginase in newly diagnosed childhood acute lymphoblastic leukaemia (DFCI 05-001): a randomised, open-label phase 3 trial. Lancet Oncol 2015;16:1677-90.

44. Pui CH, Campana D, Pei D, Bowman WP, Sandlund JT, et al. Treating childhood acute lymphoblastic leukemia without cranial irradiation. N Engl J Med 2009;360:2730-41.

45. Conter V, Valsecchi MG, Parasole R, Putti MC, Locatelli F, et al. Childhood high-risk acute lymphoblastic leukemia in first remission: results after chemotherapy or transplant from the AIEOP ALL 2000 study. Blood 2014;123:1470-8.

46. Stary J, Zimmermann M, Campbell M, Castillo L, Dibar E, et al. Intensive chemotherapy for childhood acute lymphoblastic leukemia: results of the randomized intercontinental trial ALL IC-BFM 2002. J Clin Oncol 2014;32:174-84.

47. Larsen EC, Devidas M, Chen S, Salzer WL, Raetz EA, et al. Dexamethasone and high-dose methotrexate improve outcome for children and young adults with high-risk B-acute lymphoblastic leukemia: a report from children’s oncology group study AALL0232. J Clin Oncol 2016;34:2380-8.

48. Bowman WP, Larsen EL, Devidas M, Linda SB, Blach L, et al. Augmented therapy improves outcome for pediatric high risk acute lymphocytic leukemia: results of Children’s Oncology Group trial P9906. Pediatr Blood Cancer 2011;57:569-77.

49. Marshall GM, Dalla Pozza L, Sutton R, Ng A, de Groot-Kruseman HA, et al. High-risk childhood acute lymphoblastic leukemia in first remission treated with novel intensive chemotherapy and allogeneic transplantation. Leukemia 2013;27:1497-503.

50. Yang JJ, Cheng C, Devidas M, Cao X, Fan Y, et al. Ancestry and pharmacogenomics of relapse in acute lymphoblastic leukemia. Nat Genet 2011;43:237-41.

51. Yang JJ, Cheng C, Devidas M, Cao X, Campana D, et al. Genome-wide association study identifies germline polymorphisms associated with relapse of childhood acute lymphoblastic leukemia. Blood 2012;120:4197-204.

52. Silverman LB, Gelber RD, Dalton VK, Asselin BL, Barr RD, et al. Improved outcome for children with acute lymphoblastic leukemia: results of Dana-Farber Consortium Protocol 91-01. Blood 2001;97:1211-8.

53. Pession A, Valsecchi MG, Masera G, Kamps WA, Magyarosy E, et al. Long-term results of a randomized trial on extended use of high dose L-asparaginase for standard risk childhood acute lymphoblastic leukemia. J Clin Oncol 2005;23:7161-7.

54. Pastorczak A, Fendler W, Zalewska-Szewczyk B, Gorniak P, Lejman M, et al. Asparagine synthetase (ASNS) gene polymorphism is associated with the outcome of childhood acute lymphoblastic leukemia by affecting early response to treatment. Leuk Res 2014;38:180-3.

55. Schotte D, De Menezes RX, Akbari Moqadam F, Khankahdani LM, Lange-Turenhout E, et al. MicroRNA characterize genetic diversity and drug resistance in pediatric acute lymphoblastic leukemia. Haematologica 2011;96:703-11.

56. Mei Y, Gao C, Wang K, Cui L, Li W, et al. Effect of microRNA-210 on prognosis and response to chemotherapeutic drugs in pediatric acute lymphoblastic leukemia. Cancer Sci 2014;105:463-72.

57. Mesrian Tanha H, Mojtabavi Naeini M, Rahgozar S, Moafi A, Honardoost MA. Integrative computational in-depth analysis of dysregulated miRNA-mRNA interactions in drug-resistant pediatric acute lymphoblastic leukemia cells: an attempt to obtain new potential gene-miRNA pathways involved in response to treatment. Tumour Biol 2016;37:7861-72.

58. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009;19:92-105.

59. Krejci O, Starkova J, Otova B, Madzo J, Kalinova M, et al. Upregulation of asparagine synthetase fails to avert cell cycle arrest induced by L-asparaginase in TEL/AML1-positive leukaemic cells. Leukemia 2004;18:434-41.

60. Escherich G, Troger A, Gobel U, Graubner U, Pekrun A, et al. The long-term impact of in vitro drug sensitivity on risk stratification and treatment outcome in acute lymphoblastic leukemia of childhood (CoALL 06-97). Haematologica 2011;96:854-62.

61. Wellmann R, Borden BA, Danahey K, Nanda R, Polite BN, et al. Analyzing the clinical actionability of germline pharmacogenomic findings in oncology. Cancer 2018;124:3052-65.

62. Cui H, Darmanin S, Natsuisaka M, Kondo T, Asaka M, et al. Enhanced expression of asparagine synthetase under glucose-deprived conditions protects pancreatic cancer cells from apoptosis induced by glucose deprivation and cisplatin. Cancer Res 2007;67:3345-55.

63. Lorenzi PL, Reinhold WC, Rudelius M, Gunsior M, Shankavaram U, et al. Asparagine synthetase as a causal, predictive biomarker for L-asparaginase activity in ovarian cancer cells. Mol Cancer Ther 2006;5:2613-23.

64. Samudio I, Konopleva M. Asparaginase unveils glutamine-addicted AML. Blood 2013;122:3398-400.

65. Tardito S, Uggeri J, Bozzetti C, Bianchi MG, Rotoli BM, et al. The inhibition of glutamine synthetase sensitizes human sarcoma cells to L-asparaginase. Cancer Chemother Pharmacol 2007;60:751-8.

Cancer Drug Resistance
ISSN 2578-532X (Online)


All published articles will preserved here permanently:


All published articles will preserved here permanently: