1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646-74.

2. Baylin SB, Jones PA. A decade of exploring the cancer epigenome-biological and translational implications. Nat Rev Cancer 2011;11:726-34.

3. Sandoval J, Esteller M. Cancer epigenomics: beyond genomics. Curr Opin Genet Dev 2012;22:50-5.

4. Salisbury JL. The contribution of epigenetic changes to abnormal centrosomes and genomic instability in breast cancer. J Mammary Gland Biol Neoplasia 2001;6:203-12.

5. Pihan GA, Purohit A, Wallace J, Knecht H, Woda B, et al. Centrosome defects and genetic instability in malignant tumors. Cancer Res 1998;58:3974-85.

6. Denu RA, Zasadil LM, Kanugh C, Laffin J, Weaver BA, et al. Centrosome amplification induces high grade features and is prognostic of worse outcomes in breast cancer. BMC Cancer 2016;16:47.

7. Lingle WL, Salisbury JL. Altered centrosome structure is associated with abnormal mitoses in human breast tumors. Am J Pathol 1999;155:1941-51.

8. Lingle WL, Lutz WH, Ingle JN, Maihle NJ, Salisbury JL. Centrosome hypertrophy in human breast tumors: implications for genomic stability and cell polarity. Proc Natl Acad Sci U S A 1998;95:2950-5.

9. Krämer A, Neben K, Ho AD. Centrosome aberrations in hematological malignancies. Cell Biol Int 2005;29:375-83.

10. Giehl M, Fabarius A, Frank O, Hochhaus A, Hafner M, et al. Centrosome aberrations in chronic myeloid leukemia correlate with stage of disease and chromosomal instability. Leukemia 2005;19:1192-7.

11. Starita LM, Machida Y, Sankaran S, Elias JE, Griffin K, et al. BRCA1-dependent ubiquitination of gamma-tubulin regulates centrosome number. Mol Cell Biol 2004;24:8457-66.

12. Conduit PT, Wainman A, Raff JW. Centrosome function and assembly in animal cells. Nat Rev Mol Cell Biol 2015;16:611-24.

13. Jakobsen L, Vanselow K, Skogs M, Toyoda Y, Lundberg E, et al. Novel asymmetrically localizing components of human centrosomes identified by complementary proteomics methods. EMBO J 2011;30:1520-35.

14. Andersen JS, Wilkinson CJ, Mayor T, Mortensen P, Nigg EA, et al. Proteomic characterization of the human centrosome by protein correlation profiling. Nature 2003;426:570-4.

15. Loncarek J, Bettencourt-Dias M. Building the right centriole for each cell type. J Cell Biol 2018;217:823-35.

16. O’Connell KF, Caron C, Kopish KR, Hurd DD, Kemphues KJ, et al. The C. elegans zyg-1 gene encodes a regulator of centrosome duplication with distinct maternal and paternal roles in the embryo. Cell 2001;105:547-58.

17. Habedanck R, Stierhof YD, Wilkinson CJ, Nigg EA. The Polo kinase Plk4 functions in centriole duplication. Nat Cell Biol 2005;7:1140-6.

18. Arquint C, Nigg EA. The PLK4-STIL-SAS-6 module at the core of centriole duplication. Biochem Soc Trans 2016;44:1253-63.

19. Pihan GA. Centrosome dysfunction contributes to chromosome instability, chromoanagenesis, and genome reprograming in cancer. Front Oncol 2013;3:277.

20. Yang J, Adamian M, Li T. Rootletin interacts with C-Nap1 and may function as a physical linker between the pair of centrioles/basal bodies in cells. Mol Biol Cell 2006;17:1033-40.

21. Mardin BR, Lange C, Baxter JE, Hardy T, Scholz SR, et al. Components of the Hippo pathway cooperate with Nek2 kinase to regulate centrosome disjunction. Nat Cell Biol 2010;12:1166-76.

22. Fry AM, Meraldi P, Nigg EA. A centrosomal function for the human Nek2 protein kinase, a member of the NIMA family of cell cycle regulators. EMBO J 1998;17:470-81.

23. Centrosome. Available from: [Last accessed on 22 Apr 2019].

24. Boveri T. 1900. Ueber die Natur der Centrosomen. Zellen-Studien 4. Jena, Germany: G. Fischer; .

25. Farina F, Gaillard J, Guérin C, Couté Y, Sillibourne J, et al. The centrosome is an actin-organizing centre. Nat Cell Biol 2016;18:65-75.

26. Nam HJ, Naylor RM, van Deursen JM. Centrosome dynamics as a source of chromosomal instability. Trends Cell Biol 2015;25:65-73.

27. Pihan GA, Wallace J, Zhou Y, Doxsey SJ. Centrosome abnormalities and chromosome instability occur together in pre-invasive carcinomas. Cancer Res 2003;63:1398-1404.

28. Chan JY. A clinical overview of centrosome amplification in human cancers. Int J Biol Sci 2011;7:1122-44.

29. Kwon M, Godinho SA, Chandhok NS, Ganem NJ, Azioune A, et al. Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev 2008;22:2189-203.

30. Neben K, Giesecke C, Schweizer S, Ho AD, Krämer A. Centrosome aberrations in acute myeloid leukemia are correlated with cytogenetic risk profile. Blood 2003;101:289-91.

31. Mahathre MM, Rida PC, Aneja R. The more the messier: centrosome amplification as a novel biomarker for personalized treatment of colorectal cancers. J Biomed Res 2015;30:441-51.

32. Kais Z, Parvin JD. Regulation of centrosomes by the BRCA1-dependent ubiquitin ligase. Cancer Biol Ther 2008;7:1540-3.

33. Fukasawa K, Choi T, Kuriyama R, Rulong S, Vande Woude GF. Abnormal centrosome amplification in the absence of p53. Science 1996;271:1744-7.

34. Li X, Song N, Liu L, Liu X, Ding X, et al. USP9X regulates centrosome duplication and promotes breast carcinogenesis. Nat Commun 2017;8:14866.

35. Xie S, Qin J, Liu S, Zhang Y, Wang J, et al. Cep70 overexpression stimulates pancreatic cancer by inducing centrosome abnormality and microtubule disorganization. Sci Rep 2016;6:21263.

36. Denu RA, Zasadil LM, Kanugh C, Laffin J, Weaver BA, et al. Centrosome amplification induces high grade features and is prognostic of worse outcomes in breast cancer. BMC Cancer 2016;16:47.

37. Miyachika Y, Yamamoto Y, Matsumoto H, Nishijima J, Kawai Y, et al. Centrosome amplification in bladder washing cytology specimens is a useful prognostic biomarker for non-muscle invasive bladder cancer. Cancer Genet 2013;206:12-8.

38. Zeng YR, Han ZD, Wang C, Cai C, Huang YQ, et al. Overexpression of NIMA-related kinase 2 is associated with progression and poor prognosis of prostate cancer. BMC Urol 2015;15:90.

39. Ogden A, Rida PC, Aneja R. Prognostic value of CA20, a score based on centrosome amplification-associated genes, in breast tumors. Sci Rep 2017;7:262.

40. Huang J, Sun SG, Hou S. Aberrant NEK2 expression might be an independent predictor for poor recurrence-free survival and overall survival of skin cutaneous melanoma. Eur Rev Med Pharmacol Sci 2018;22:3694-3702.

41. Yun M, Rong J, Lin ZR, He YL, Zhang JX, et al. High expression of transforming acidic coiled coil-containing protein 3 strongly correlates with aggressive characteristics and poor prognosis of gastric cancer. Oncol Rep 2015;34:1397-1405.

42. Karkera JD, Cardona GM, Bell K, Gaffney D, Portale JC, et al. Oncogenic characterization and pharmacologic sensitivity of activating fibroblast growth factor receptor (FGFR) genetic alterations to the selective FGFR inhibitor erdafitinib. Mol Cancer Ther 2017;16:1717-26.

43. Lauffart B, Vaughan MM, Eddy R, Chervinsky D, DiCioccio RA, et al. Aberrations of TACC1 and TACC3 are associated with ovarian cancer. BMC Women’s Health 2005;5:8.

44. Fan G, Sun L, Shan P, Zhang X, Huan J, et al. Loss of KLF14 triggers centrosome amplification and tumorigenesis. Nat Commun 2015;6:8450.

45. Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, et al. A landscape of driver mutations in melanoma. Cell 2012;150:251-63.

46. Tamotsu K, Okumura H, Uchikado Y, Kita Y, Sasaki K, et al. Correlation of Aurora-A expression with the effect of chemoradiation therapy on esophageal squamous cell carcinoma. BMC Cancer 2015;15:323.

47. Rakha EA, Pinder SE, Paish CE, Ellis IO. Expression of the transcription factor CTCF in invasive breast cancer: a candidate gene located at 16q22.1. Br J Cancer 2004;91:1591-6.

48. Lee J, Gollahon L. Nek2-targeted ASO or siRNA pretreatment enhances anticancer drug sensitivity in triplenegative breast cancer cells. Int J Oncol 2013;42:839-47.

49. Zhou W, Yang Y, Xia J, Wang H, Salama ME, et al. NEK2 induces drug resistance mainly through activation of efflux drug pumps and is associated with poor prognosis in myeloma and other cancers. Cancer Cell 2013;23:48-62.

50. Liu X, Gao Y, Lu Y, Zhang J, Li L, et al. Upregulation of NEK2 is associated with drug resistance in ovarian cancer. Oncol Rep 2014;31:745-54.

51. Wu SM, Lin SL, Lee KY, Chuang HC, Feng PH, et al. Hepatoma cell functions modulated by NEK2 are associated with liver cancer progression. Int J Cancer 2017;140:1581-96.

52. Zhao W, Song Y, Xu B, Zhan Q. Overexpression of centrosomal protein Nlp confers breast carcinoma resistance to paclitaxel. Cancer Biol Ther 2012;13:156-63.

53. Kleylein-Sohn J, Pöllinger B, Ohmer M, Hofmann F, Nigg EA,  Hemmings, et al. Acentrosomal spindle organization renders cancer cells dependent on the kinesin HSET. J Cell Sci 2012;125:5391-402.

54. Kwon M, Bagonis M, Danuser G, Pellman D. Direct microtubule-binding by myosin-10 orients centrosomes toward retraction fibers and subcortical actin clouds. Dev Cell 2015;34:323-37.

55. De S, Cipriano R, Jackson MW, Stark GR. Overexpression of kinesins mediates docetaxel resistance in breast cancer cells. Cancer Res 2009;69:8035-42.

56. Li JJ, Weroha SJ, Lingle WL, Papa D, Salisbury JL, et al. Estrogen mediates Aurora-A overexpression, centrosome amplification, chromosomal instability, and breast cancer in female ACI rats. Proc Natl Acad Sci USA 2004;101:18123-8.

57. Marina M, Saavedra HI. Nek2 and Plk4: prognostic markers, drivers of breast tumorigenesis and drug resistance. Front Biosci (Landmark Ed) 2014;19:352-65.

58. Jusino S, Fernández-Padín FM, Saavedra HI. Centrosome aberrations and chromosome instability contribute to tumorigenesis and intra-tumor heterogeneity. J Cancer Metastasis Treat 2018;4:pii:43.

59. Lomonosova E, Chinnadurai G. BH3-only proteins in apoptosis and beyond: an overview. Oncogene 2008;27:S2-19.

60. Zhou W, Yang Y, Xia J, Wang H, Salama ME, et al. NEK2 induces drug resistance mainly through activation of efflux drug pumps and is associated with poor prognosis in myeloma and other cancers. Cancer Cell 2013;23:48-62.

61. Moustafa-Kamal M, Gamache I, Lu Y, Li S, Teodoro JG, et al. BimEL is phosphorylated at mitosis by Aurora A and targeted for degradation by βTrCP1. Cell Death Differ 2013;20:1393-1403.

62. Kalimutho M, Sinha D, Jeffery J, Nones K, Srihari S, et al. CEP55 is a determinant of cell fate during perturbed mitosis in breast cancer. EMBO Mol Med 2018;10:e8566.

63. Hayward DG, Clarke RB, Faragher AJ, Pillai MR, Hagan IM, et al. The centrosomal kinase Nek2 displays elevated levels of protein expression in human breast cancer. Cancer Res 2004;64:7370-6.

64. Yoo BH, Kang DS, Park CH, Kang K, Bae CD. CKAP2 phosphorylation by CDK1/cyclin B1 is crucial for maintaining centrosome integrity. Exp Mol Med 2017;49:e354.

65. Boutros R, Ducommun B. Asymmetric localization of the CDC25B phosphatase to the mother centrosome during interphase. Cell Cycle 2008;7:401-6.

66. Cazales M, Schmitt E, Montembault E, Dozier C, Prigent C, et al. CDC25B phosphorylation by Aurora-A occurs at the G2/M transition and is inhibited by DNA damage. Cell Cycle 2005;4:1233-8.

67. Bouché JP, Froment C, Dozier C, Esmenjaud-Mailhat C, Lemaire M, et al. NanoLC-MS/MS analysis provides new insights into the phosphorylation pattern of Cdc25B in vivo: full overlap with sites of phosphorylation by Chk1 and Cdk1/cycB kinases in vitro. J Proteome Res 2008;7:1264-73.

68. Dutertre S, Cazales M, Quaranta M, Froment C, Trabut V, et al. Phosphorylation of cdc25b by aurora-a at the centrosome contributes to the g2-m transition. J Cell Sci 2004;117:2523-31.

69. Boutros R, Lobjois V, Ducommun B. CDC25B involvement in the centrosome duplication cycle and in microtubule nucleation. Cancer Res 2007;67:11557-64.

70. Wang J, Nikhil K, Viccaro K, Chang L, Jacobsen M, et al. The Aurora-A-Twist1 axis promotes highly aggressive phenotypes in pancreatic carcinoma. J Cell Sci 2017;130:1078-93.

71. Joukov V, De Nicolo A, Rodriguez A, Walter JC, Livingston DM. Centrosomal protein of 192 kDa (Cep192) promotes centrosome-driven spindle assembly by engaging in organelle-specific Aurora A activation. Proc Natl Acad Sci USA 2010;107:21022-7.

72. Scutt PJ, Chu ML, Sloane DA, Cherry M, Bignell CR, et al. Discovery and exploitation of inhibitor-resistant aurora and polo kinase mutants for the analysis of mitotic networks. J Biol Chem 2009;284:15880-93.

73. Zorba A, Buosi V, Kutter S, Kern N, Pontiggia F, et al. Molecular mechanism of Aurora A kinase autophosphorylation and its allosteric activation by TPX2. ELife 2014;3:e02667.

74. Nakamura T, Saito H, Takekawa M. SAPK pathways and p53 cooperatively regulate PLK4 activity and centrosome integrity under stress. Nat Commun 2013;4:1775.

75. Rauch N, Rukhlenko OS, Kolch W, Kholodenko BN. MAPK kinase signaling dynamics regulate cell fate decisions and drug resistance. Current Opin Struct Biol 2016;41:151-8.

76. Cunha-Ferreira I, Bento I, Pimenta-Marques A, Jana SC, Lince-Faria M, et al. Regulation of autophosphorylation controls PLK4 self-destruction and centriole number. Current Biology 2013;23:2245-54.

77. Guderian G, Westendorf J, Uldschmid A, Nigg EA. Plk4 trans-autophosphorylation regulates centriole number by controlling betaTrCP-mediated degradation. J Cell Sci 2010;123:2163-9.

78. Slevin LK, Nye J, Pinkerton DC, Buster DW, Rogers GC, et al. The structure of the plk4 cryptic polo box reveals two tandem polo boxes required for centriole duplication. Structure 2012;20:1905-17.

79. Fournier M, Orpinell M, Grauffel C, Scheer E, Garnier JM, et al. KAT2A/KAT2B-targeted acetylome reveals a role for PLK4 acetylation in preventing centrosome amplification. Nat Commun 2016;7:13227.

80. Ling H, Peng L, Seto E, Fukasawa K. Suppression of centrosome duplication and amplification by deacetylases. Cell Cycle 2012;11:3779-91.

81. Tachibana M, Sugimoto K, Fukushima T, Shinkai Y. Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J Biol Chem 2001;276:25309-17.

82. Kondo Y, Shen L, Ahmed S, Boumber Y, Sekido Y, et al. Downregulation of histone H3 lysine 9 methyltransferase G9a induces centrosome disruption and chromosome instability in cancer cells. PLoS ONE 2008;3:e2037.

83. Romanov SR, Kozakiewicz BK, Holst CR, Stampfer MR, Haupt LM, et al. Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes. Nature 2001;409:633.

84. McConnell BB, Gregory FJ, Stott FJ, Hara E, Peters G. Induced expression of p16INK4a inhibits both CDK4- and CDK2-associated kinase activity by reassortment of cyclin-CDK-inhibitor complexes. Mol Cell Biol 1999;19:1981-9.

85. Lacey KR, Jackson PK, Stearns T. Cyclin-dependent kinase control of centrosome duplication. Proc Natl Acad Sci U S A 1999;96:2817-22.

86. Matsumoto Y, Hayashi K, Nishida E. Cyclin-dependent kinase 2 (Cdk2) is required for centrosome duplication in mammalian cells. Curr Biol 1999;9:429-32.

87. Foster SA, Wong DJ, Barrett MT, Galloway DA. Inactivation of p16 in human mammary epithelial cells by CpG island methylation. Mol Cell Biol 1998;18:1793-1801.

88. Holst CR, Nuovo GJ, Esteller M, Chew K, Baylin SB, et al. Methylation of p16(INK4a) promoters occurs in vivo in histologically normal human mammary epithelia. Cancer Res 2003;63:1596-601.

89. McDermott KM, Zhang J, Holst CR, Kozakiewicz BK, Singla V, et al. p16(INK4a) prevents centrosome dysfunction and genomic instability in primary cells. PLoS Biol 2006;4:e51.

90. Berman H, Zhang J, Crawford YG, Gauthier ML, Fordyce CA, et al. Genetic and epigenetic changes in mammary epithelial cells identify a subpopulation of cells involved in early carcinogenesis. Cold Spring Harb Symp Quant Biol 2005;70:317-27.

91. Pietromonaco SF, Seluja GA, Aitken A, Elias L. Association of 14-3-3 proteins with centrosomes. Blood Cells Mol Dis 1996;22:225-37.

92. Mukhopadhyay A, Sehgal L, Bose A, Gulvady A, Senapati P, et al. 14-3-3γ prevents centrosome amplification and neoplastic progression. Sci Rep 2016;6:26580.

93. Suzuki H, Itoh F, Toyota M, Kikuchi T, Kakiuchi H, et al. Inactivation of the 14-3-3 sigma gene is associated with 5’ CpG island hypermethylation in human cancers. Cancer Res 2000;60:4353-7.

94. Iwata N, Yamamoto H, Sasaki S, Itoh F, Suzuki H, et al. Frequent hypermethylation of CpG islands and loss of expression of the 14-3-3 sigma gene in human hepatocellular. Oncogene 2000;19:5298-302.

95. Chanda S, Dasgupta UB, Guhamazumder D, Gupta M, Chaudhuri U, et al. DNA hypermethylation of promoter of gene p53 and p16 in arsenic-exposed people with and without malignancy. Toxicol Sci 2006;89:431-7.

96. Jha AK, Nikbakht M, Jain V, Sehgal A, Capalash N, et al. Promoter hypermethylation of p73 and p53 genes in cervical cancer patients among north Indian population. Mol Biol Rep 2012;39:9145-57.

97. Adrian Jarzynski, Katarzyna Papiernik, Malgorzata Polz-Dacewicz. Analysis of mutation and promoter methylation of TP53 gene in tumors of the head and neck. Current Issues in Pharmacy and Medical Sciences 2016;29:53-6.

98. Liu JL, Ma HP, Lu XL, Sun SH, Guo X, et al. NF-κB induces abnormal centrosome amplification by upregulation of CDK2 in laryngeal squamous cell cancer. Int J Oncol 2011;39:915-24.

99. Yu F, Thiesen J, Strätling WH. Histone deacetylase-independent transcriptional repression by methyl-CpG-binding protein 2. Nucleic Acids Res 2000;28:2201-6.

100. Lee MY, Moreno CS, Saavedra HI. E2F activators signal and maintain centrosome amplification in breast cancer cells. Mol Cell Biol 2014;34:2581-99.

101. Liao WT, Lu JH, Lee CH, Lan CE, Chang JG, et al. An interaction between arsenic-induced epigenetic modification and inflammatory promotion in a skin equivalent during arsenic carcinogenesis. J Invest Dermatol 2017;137:187-96.

102. Chen WJ, Wang WT, Tsai TY, Li HK, Lee YW. DDX3 localizes to the centrosome and prevents multipolar mitosis by epigenetically and translationally modulating p53 expression. Sci Rep 2017;7:9411.

103. Pouysségur J, Dayan F, Mazure NM. Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 2006;441:437-43.

104. Mittal K, Choi DH, Ogden A, Donthamsetty S, Melton BD, et al. Amplified centrosomes and mitotic index display poor concordance between patient tumors and cultured cancer cells. Sci Rep 2017;7:43984.

105. Bijnsdorp IV, Hodzic J, Lagerweij T, Westerman B, Krijgsman O, et al. miR-129-3p controls centrosome number in metastatic prostate cancer cells by repressing CP110. Oncotarget 2016;7:16676-87.

106. Wang ZD, Shen LP, Chang C, Zhang XQ, Chen ZM, et al. Long noncoding RNA lnc-RI is a new regulator of mitosis via targeting miRNA-210-3p to release PLK1 mRNA activity. Sci Rep 2016;6:25385.

107. Takahashi Y, Iwaya T, Sawada G, Kurashige J, Matsumura T, et al. Up-regulation of NEK2 by microRNA-128 methylation is associated with poor prognosis in colorectal cancer. Ann Surg Oncol 2014;21:205-12.

108. Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature 1997;387:296-9.

109. Kubbutat MH, Jones SN, Vousden KH. Regulation of p53 stability by Mdm2. Nature 1997;387:299-303.

110. Leach FS, Tokino T, Meltzer P, Burrell M, Oliner JD, et al. p53 Mutation and MDM2 amplification in human soft tissue sarcomas. Cancer Res 1993;53:2231-4.

111. Akio Suzuki, Masakazu Toi, Yutaka Yamamoto, Shigehira Saji, Mariko Muta, et al. Role of MDM2 overexpression in doxorubicin resistance of breast carcinoma,. Jpn J Cancer Res 1998;89:221-7.

112. Keshelava N, Zuo JJ, Chen P, Waidyaratne SN, Luna MC, et al. Loss of p53 function confers high-level multidrug resistance in neuroblastoma cell lines. Cancer Res 2001;61:6185-93.

113. Čajánek L, Glatter T, Nigg EA. The E3 ubiquitin ligase Mib1 regulates Plk4 and centriole biogenesis. J Cell Sci 2015;128:1674-82.

114. Shen X, Jia Z, D‘Alonzo D, Wang X, Bruder E, et al. HECTD1 controls the protein level of IQGAP1 to regulate the dynamics of adhesive structures. Cell Commun Signal 2017;15:2.

115. Wang XG, De Geyter C, Jia ZH, Peng Y, Zhang H. HECTD1 regulates expression of SNAIL: implications for epithelial-mesenchymal transition (EMT). Forthcoming 2019.

116. Drilon A, Laetsch TW, Kummar S, DuBois SG, Lassen UN, et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med 2018;378:731-9.

117. Sampson PB, Liu Y, Patel NK, Feher M, Forrest B, et al. The discovery of polo-like kinase 4 inhibitors: design and optimization of spiro[cyclopropane-1,3ʹ[3H]indol]-2ʹ(1ʹH)-ones as orally bioavailable antitumor agents. J Med Chem 2015;58:130-46.

118. Mason JM, Lin DC, Wei X, Che Y, Yao Y, et al. Functional characterization of CFI-400945, a Polo-like kinase 4 inhibitor, as a potential anticancer agent. Cancer Cell 2014;26:163-76.

119. Liu X, Winey M. The MPS1 family of protein kinases. Annu Rev Biochem 2012;81:561-85.

120. Janssen A, Kops GJ, Medema RH. Elevating the frequency of chromosome mis-segregation as a strategy to kill tumor cells. Proc Natl Acad Sci U S A 2009;106:19108-13.

121. Jeong SB, Im JH, Yoon JH, Bui QT, Lim SC, et al. Essential role of polo-like kinase 1 (Plk1) oncogene in tumor growth and metastasis of tamoxifen-resistant breast cancer. Mol Cancer Ther 2018;17:825-37.

122. Dominguez-Brauer C, Thu KL, Mason JM, Blaser H, Bray MR, et al. Targeting mitosis in cancer: emerging strategies. Mol Cell 2015;60:524-36.

123. Yim H. Current clinical trials with polo-like kinase 1 inhibitors in solid tumors. Anticancer Drugs 2013;24:999-1006.

124. Gjertsen BT, Schoffski P. Discovery and development of the Polo-like kinase inhibitor volasertib in cancer therapy. Leukemia 2015;29:11-9.

125. Vijayaraghavan S, Moulder S, Keyomarsi K, Layman RM. Inhibiting CDK in cancer therapy: current evidence and future directions. Target Oncol 2018;13:21-38.

126. Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 2009;9:153-66.

127. Cicenas J, Kalyan K, Sorokinas A, Jatulyte A, Valiunas D, et al. Highlights of the latest advances in research on CDK inhibitors. Cancers (Basel) 2014;6:2224-42.

128. Carlson BA, Dubay MM, Sausville EA, Brizuela L, Worland PJ. Flavopiridol induces G1 arrest with inhibition of cyclin-dependent kinase (CDK) 2 and CDK4 in human breast carcinoma cells. Cancer Res 1996;56:2973-8.

129. Zeidner JF, Karp JE. Clinical activity of alvocidib (flavopiridol) in acute myeloid leukemia. Leuk Res 2015;39:1312-8.

130. Blachly JS, Byrd JC, Grever M. Cyclin-dependent kinase inhibitors for the treatment of chronic lymphocytic leukemia. Semin Oncol 2016;43:265-73.

131. Kollareddy M, Zheleva D, Dzubak P, Brahmkshatriya PS, Lepsik M, et al. Aurora kinase inhibitors: progress towards the clinic. Invest New Drugs 2012;30:2411-32.

132. Goldberg SL, Fenaux P, Craig MD, Gyan E, Lister J, et al. An exploratory phase 2 study of investigational Aurora A kinase inhibitor alisertib (MLN8237) in acute myelogenous leukemia and myelodysplastic syndromes. Leuk Res Rep 2014;3:58-61.

Cancer Drug Resistance
ISSN 2578-532X (Online)


All published articles will preserved here permanently:


All published articles will preserved here permanently: