1. Ezzeldin H, Diasio R. Dihydropyrimidine dehydrogenase deficiency, a pharmacogenetic syndrome associated with potentially life-threatening toxicity following 5-fluorouracil administration. Clin Colorectal Cancer 2004;4:181-9.

2. Scrip’s Cancer Chemotherapy Report. Scrip World Pharmaceutical News. London: PJB Publications Ltd; 2002.

3. Loriot MA, Ciccolini J, Thomas F, Barin-Le-Guellec C, Royer B, et al. Dihydropyrimidine déhydrogenase (DPD) deficiency screening and securing of fluoropyrimidine-based chemotherapies: Update and recommendations of the French GPCO-Unicancer and RNPGx networks. Bull Cancer 2018;105:397-407.

4. Heggie GD, Sommadossi JP, Cross DS, Huster WJ, Diasio RB. Clinical pharmacokinetics of 5-fluorouracil and its metabolites in plasma, urine, and bile. Cancer Res 1987;47:2203-6.

5. Van Cutsem E, Twelves C, Cassidy J, Allman D, Bajetta E, et al. Oral capecitabine compared with intravenous fluorouracil plus leucovorin in patients with metastatic colorectal cancer: results of a large phase III study. J Clin Oncol 2001;19:4097-106.

6. Rosmarin D, Palles C, Pagnamenta A, Kaur K, Pita G, et al. A candidate gene study of capecitabine-related toxicity in colorectal cancer identifies new toxicity variants at DPYD and a putative role for ENOSF1 rather than TYMS. Gut 2015;64:111-20.

7. Saltz LB, Niedzwiecki D, Hollis D, Goldberg RM, Hantel A, et al. Irinotecan fluorouracil plus leucovorin is not superior to fluorouracil plus leucovorin alone as adjuvant treatment for stage III colon cancer: results of CALGB 89803. J Clin Oncol 2007;25:3456-61.

8. Harris BE, Song R, Soong SJ, Diaso RB. Relationship between dihydropyrimidine dehydrogenase activity and plasma 5-fluorouracil levels with evidence for circadian variation of enzyme activity and plasma drug levels in cancer patients receiving 5-fluorouracil by protracted continuous infusion. Cancer Res 1990;50:197-201.

9. Grem JL, Yee LK, Venzon D, Takimoto CH, Allegra CJ. Inter- and intra-individual variation in dihydropyrimidine dehydrogenase activity in peripheral blood mononuclear cells. Cancer Chemother Pharmacol 1997;40:117-25.

10. Ogura K, Ohnuma T, Minamide Y, Mizuno A, Nishiyama A, et al. Dihydropyrimidine dehydrogenase activity in 150 healthy Japanese volunteers and identification of novel mutations. Clin Cancer Res 2005;11:5104-111.

11. Morsman JM, Sludden J, Ameyaw MM, Githang J, Indalo A, et al. Evaluation of dihydropyrimidine dehydrogenase activity in South-west Asian, Kenyan and Ghanaian populations. Br J Clin Pharmacol 2000;50:269-72.

12. Yamaguchi K, Arai Y, Kanda Y, Akagi K. Germline mutation of dihydropyrimidine dehydrogenase gene among a Japanese population in relation to toxicity to 5-fluorouracil. Jpn J Cancer Res 2001;92:337-42.

13. Diasio RB, Harris BE. Clinical pharmacology of 5-fluorouracil. Clin Pharmacokinet 1989;16:215-37.

14. Longley DB, Harkin DP, Johnston PG. 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 2003;3:330-8.

15. Johnson MR, Diasio RB. Importance of dihydropyrimidine dehydrogenase (DPD) deficiency in patients exhibiting toxicity following treatment with 5-fluorouracil. Adv Enzyme Regul 2001;41:151-7.

16. Mattison LK, Fourie J, Desmond RA, Modak A, Saif MW, et al. Increased prevalence of dihydropyrimidine dehydrogenase deficiency in African-Americans compared with Caucasians. Clin Cancer Res 2006;12:5491-5.

17. Lu Z, Zhang R, Diasio RB. Dihydropyrimidine dehydrogenase activity in human peripheral blood mononuclear cells and liver: population characteristics, newly identified deficient patients, and clinical implication in 5-fluorouracil chemotherapy. Cancer Res 1993;53:5433-8.

18. Etienne MC, Lagrange JL, Dassonville O, Fleming R, Thyss A, et al. Population study of dihydropyrimidine dehydrogenase in cancer patients. J ClinOncol 1994;12:2248-53.

19. Amstutz U, Froehlich TK, Largiadèr CR. Dihydropyrimidine dehydrogenase gene as a major predictor of severe 5-fluorouracil toxicity. Pharmacogenomics 2011;12:1321-36.

20. Morel A, Boisdron-Celle M, Fey L, Soulie P, Craipeau MC, et al. Clinical relevance of different dihydropyrimidine dehydrogenase gene single nucleotide polymorphisms on 5-fluorouracil tolerance. Mol Cancer Ther 2006;5:2895-904.

21. Van Kuilenburg AB, Haasjes J, Richel DJ, Zoetekouw L, Van Lenthe H, et al. Clinical implications of dihydropyrimidine dehydrogenase (DPD) deficiency in patients with severe 5-fluorouracil-associated toxicity: identification of new mutations in the DPD gene. Clin Cancer Res 2000;6:4705-12.

22. Milano G, Etienne MC, Pierrefite V, Barberi-Heyob M, Deporte-Fety R, et al. Dihydropyrimidine dehydrogenase deficiency and fluorouracilrelated toxicity. Br J Cancer 1999;79:627-30.

23. Van Kuilenburg AB, Meinsma R, Zoetekouw L, Van Gennip AH. Increased risk of grade IV neutropenia after administration of 5-fluorouracil due to a dihydropyrimidine dehydrogenase deficiency: high prevalence of the IVS14+1G>A mutation. Int J Cancer 2002;101:253-8.

24. Wei X, Elizondo G, Sapone A, McLeod HL, Raunio H, et al. Characterization of the human dihydropyrimidine dehydrogenase gene. Genomics 1998;51:391-400.

25. Offer SM, Diasio RB. Is it finally time for a personalized medicine approach for fluorouracil-based therapies? J Clin Oncol 2016;34:205-7.

26. Deenen MJ, Meulendijks D, Cats A, Sechterberger MK, Severens JL, et al. Upfront genotyping of DPYD*2A to individualize fluoropyrimidine therapy: a safety and cost analysis. J Clin Oncol 2016;34:227-34.

27. Launay M, Ciccolini J, Rodallec A, Fournel C, Duffaud F, et al. Upfront DPD Deficiency Detection to Secure 5-FU Administration: Part 1 - Where Do We Stand? Clin Cancer Drugs 2017;4:74-81.

28. Siddiqui NS, Purvey S, Hamal R, Zhang L, Diasio RB, et al. Dihydropyrimidine dehydrogenase gene (DPYD) polymorphism among pts with 5-FU/capecitabine (CAP)-related adverse events (AEs): Experience of 2 decades. J Clin Oncol 2018;36:2576.

29. Van Staveren MC, Guchelaar HJ, Van Kuilenburg ABP, Gelderblom H, Maring JG. Evaluation of predictive tests for screening for dihydropyrimidine dehydrogenase deficiency. Pharmacogenomics J 2013;13:389-95.

30. Launay M, Dahan L, Duval M, Rodallec A, Milano G, et al. Beating the odds: efficacy and toxicity of dihydropyrimidine dehydrogenase-driven adaptive dosing of 5-FU in patients with digestive cancer. Br J Clin Pharmacol 2016;81:124-30.

31. Amstutz U, Henricks LM, Offer SM, Barbarino J, Schellens JHM, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for Dihydropyrimidine Dehydrogenase Genotype and Fluoropyrimidine Dosing: 2017 Update. Clin Pharmacol Ther 2018;103:210-6.

32. Lee AM, Shi Q, Pavey E, Alberts SR, Sargent DJ, et al. DPYD variants as predictors of 5-fluorouracil toxicity in adjuvant colon cancer treatment (NCCTG N0147). J Natl Cancer Inst 2014;106:1-12.

33. Meulendijks D, Cats A, Beijnen JH, Schellens JH. Improving safety of fluoropyrimidine chemotherapy by individualizing treatment based on dihydropyrimidine dehydrogenase activity - ready for clinical practice? Cancer Treat Rev 2016;50:23-34.

34. Henricks LM, Lunenburg CA, Meulendijks D, Gelderblom H, Cats A, et al. Translating DPYD genotype into DPD phenotype: using the DPYD gene activity score. Pharmacogenomics 2015;16:1277-86.

35. Van Kuilenburg AB, Muller EW, Haasjes J, Meinsma R, Zoetekouw L, et al. Lethal outcome of a patient with a complete dihydropyrimidine dehydrogenase (DPD) deficiency after administration of 5-fluorouracil: frequency of the common IVS14 + 1G>A mutation causing DPD deficiency. Clin Cancer Res 2001;7:1149-53.

36. Van Kuilenburg AB, Vreken P, Beex LV, Meinsma R, Van Lenthe H, et al. Heterozygosity for a point mutation in an invariant splice donor site of dihydropyrimidine dehydrogenase and severe 5-fluorouracil related toxicity. Eur J Cancer 1997;33:2258-64.

37. Offer SM, Wegner NJ, Fossum C, Wang K, Diasio RB. Phenotypic profiling of DPYD variations relevant to 5-fluorouracil sensitivity using real-time cellular analysis and in vitro measurement of enzyme activity. Cancer Res 2013;73:1958-68.

38. Johnson MR, Hageboutros A, Wang K, High L, Smith JB, et al. Life-threatening toxicity in a dihydropyrimidine dehydrogenase-deficient patient after treatment with topical 5-fluorouracil. Clin Cancer Res 1999;5:2006-11.

39. Seck K, Riemer S, Kates R, Ullrich T, Lutz V, et al. Analysis of the DPYD gene implicated in 5-fluorouracil catabolism in a cohort of Caucasian individuals. Clin Cancer Res 2005;11:5886-92.

40. Caudle KE, Thorn CF, Klein TE, Swen JJ, McLeod HL, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for dihydropyrimidine dehydrogenase genotype and fluoropyrimidine dosing. Clin Pharmacol Ther 2013;94:640-5.

41. Offer SM, Fossum CC, Wegner NJ, Stuflesser AJ, Butterfield GL, et al. Comparative functional analysis of DPYD variants of potential clinical relevance to dihydropyrimidine dehydrogenase activity. Cancer Res 2014;74:2545-54.

42. Amstutz U, Farese S, Aebi S, Largiadèr CR. Dihydropyrimidine dehydrogenase gene variation and severe 5-fluorouracil toxicity: a haplotype assessment. Pharmacogenomics 2009;10:931-44.

43. Van Kuilenburg AB, Meijer J, Mul AN, Meinsma R, Schmid V, et al. Intragenic deletions and a deep intronic mutation affecting pre-mRNA splicing in the dihydropyrimidine dehydrogenase gene as novel mechanisms causing 5-fluorouracil toxicity. Hum Genet 2010;128:529-38.

44. Deenen MJ, Tol J, Burylo AM, Doodeman VD, de Boer A, et al. Relationship between single nucleotide polymorphisms and haplotypes in DPYD and toxicity and efficacy of capecitabine in advanced colorectal cancer. Clin Cancer Res 2011;17:3455-68.

45. Froehlich TK, Amstutz U, Aebi S, Joerger M, Largiadèr CR. Clinical importance of risk variants in the dihydropyrimidine dehydrogenase gene for the prediction of early-onset fluoropyrimidine toxicity. Int J Cancer 2015;136:730-9.

46. Sistonen J, Büchel B, Froehlich TK, Kummer D, Fontana S, et al. Predicting 5-fluorouracil toxicity: DPD genotype and 5,6-dihydrouracil:uracil ratio. Pharmacogenomics 2014;15:1653-66.

47. Meulendijks D, Henricks LM, van Kuilenburg AB, Jacobs BA, Aliev A, et al. Patients homozygous for DPYD c.1129-5923C>G/haplotype B3 have partial DPD deficiency and require a dose reduction when treated with fluoropyrimidines. Cancer Chemother Pharmacol 2016;78:875-80.

48. Meulendijks D, Henricks LM, Sonke GS, Deenen MJ, Froehlich TK, et al. Clinical relevance of DPYD variants c.1679T>G, c.1236G>A/HapB3, and c.1601G>A as predictors of severe fluoropyrimidine-associated toxicity: a systematic review and meta-analysis of individual patient data. Lancet Oncol 2015;16:1639-50.

49. Henricks LM, Opdam FL, Beijnen JH, Cats A, Schellens JHM. DPYD genotype-guided dose individualization to improve patient safety of fluoropyrimidine therapy: call for a drug label update. Ann Oncol 2017;28:2915-22.

50. Henricks LM, Lunenburg CATC, de Man FM, Meulendijks D, Frederix GWJ, et al. DPYD genotype-guided dose individualisation of fluoropyrimidine therapy in patients with cancer: a prospective safety analysis. Lancet Oncol 2018;19:1459-67.

51. Vallböhmer D, Yang DY, Kuramochi H, Shimizu D, Danenberg KD, et al. DPD is a molecular determinant of capecitabine efficacy in colorectal cancer. Int J Oncol 2007;31:413-8.

52. Salonga D, Danenberg KD, Johnson M, Metzeger R, Groshen S, et al. Colorectal tumors responding to 5-fluorouracil have low gene expression levels of dihydropyrimidine dehydrogenase, thymidylate synthase, and thymidine phosphorylase. Clin Cancer Res 2000;6:1322-7.

53. Yanagisawa Y, Maruta F, Iinuma N, Ishizone S, Koide N, et al. Modified irinotecan/5FU/leucovorin therapy in advanced colorectal cancer and predicting therapeutic efficacy by expression of tumorrelated enzymes. Scand J Gastroenterol 2007;42:477-84.

54. Meropol NJ, Gold PJ, Diasio RB, Andria M, Dhami M, et al. Thymidine phosphorylase expression is associated with response to capecitabine plus irinotecan in patients with metastatic colorectal cancer. J Clin Oncol 2006;24:4051-3.

55. Koopman M, Vanderbosch S, Tinteren H, Ligtenberg MJ, Nagtegaal I, et al. Predictive and prognostic markers for the outcome of chemotherapy in advanced colorectal cancer, a retrospective analysis of the Phase III randomised CAIRO study. Eur J Cancer 2009;45:1999-2006.

56. Gustavsson B, Kaiser C, Carlsson G, Wettergren Y, Odin E, et al. Molecular determinants of efficacy for 5-FU-based treatments in advanced colorectal cancer: mRNA expression for 18 chemotherapy-related genes. Int J Cancer 2009;124:1220-6.

57. Ciaparrone M, Quirino M, Schinzari G, Zannoni G, Corsi DC, et al. Predictive role of thymidylate synthase, dihydropyrimidine dehydrogenase and thymidine phosphorylase expression in colorectal cancer patients receiving adjuvant 5-fluorouracil. Oncology 2006;70:366-77.

58. Oi K, Makino M, Ozaki M, Takemoto H, Yamane N, et al. Immunohistochemical dihydropyrimidine dehydrogenase expression is a good prognostic indicator for patients with Dukes’ C colorectal cancer. Anticancer Res 2004;24:273-9.

59. Lassmann S, Hennig M, Rosenberg R, Fontanini G, Vannozzi F, et al. Thymidine phosphorylase, dihydropyrimidine dehydrogenase and thymidylate synthase mRNA expression in primary colorectal tumors-correlation to tumor histopathology and clinical follow-up. Int J Colorectal Dis 2006;21:238-47.

60. Hotta T, Takifuji K, Taniguchi K, Sahara M, Yokoyama S, et al. The relationship between survival and the expression of dihydropyrimidine dehydrogenase in patients with colorectal cancer. Oncol Rep 2006;16:177-82.

61. Jensen SA, Vainer B, Sorensen JB. The prognostic significance of thymidylate synthase and dihydropyrimidine dehydrogenase in colorectal cancer of 303 patients adjuvantly treated with 5-fluorouracil. Int J Cancer 2007;120:694-701.

62. Soong R, Shah N, Salto-Tellez M, Tai BC, Soo RA, et al. Prognostic significance of thymidylate synthase, dihydropyrimidine dehydrogenase and thymidine phosphorylase protein expression in colorectal cancer patients treated with or without 5-fluorouracil-based chemotherapy. Ann Oncol 2008;19:915-9.

63. Kornmann M, Schwabe W, Sander S, Kron M, Sträter J, et al. Thymidylate synthase and dihydropyrimidine dehydrogenase mRNA expression levels: predictors for survival in colorectal cancer patients receiving adjuvant 5-fluorouracil. Clin Cancer Res 2003;9:4116-24.

64. Westra JL, Hollema H, Schaapveld M, Platteel I, Oien KA, et al. Predictive value of thymidylate synthase and dihydropyrimidine dehydrogenase protein expression on survival in adjuvantly treated stage III colon cancer patients. Ann Oncol 2005;16:1646-53.

65. Kornmann M, Link KH, Galuba I, Ott K, Schwabe W, et al. Association of time to recurrence with thymidylate synthase and dihydropyrimidine dehydrogenase mRNA expression in stage II and III colorectal cancer. J Gastrointest Surg 2002;6:331-7.

66. IKeguchi M, Makino M, Kaibara N. Thymidine phosphorylase and dihydropyrimidine dehydrogenase activity in colorectal carcinoma and patients prognosis. Langenbecks Arch Surg 2002;387:240-5.

67. Smorenburg CH, Peters GJ, Van Groeningen CJ, Noordhuis P, Smid K, et al. Phase II study of tailored chemotherapy for advanced colorectal cancer with either 5-fluouracil and leucovorin or oxaliplatin and irinotecan based on the expression of thymidylate synthase and dihydropyrimidine dehydrogenase. Ann Oncol 2006;17:35-42.

68. Toriumi F, Kubota T, Saikawa Y, Yoshida M, Otani Y, et al. Thymidylate synthetase (TS) genotype and TS/dihydropyrimidine dehydrogenase mRNA level as an indicator in determining chemosensitivity to 5-fluorouracil in advanced gastric carcinoma. Anticancer Res 2004;24:2455-63.

69. Terashima M, Irinoda T, Fujiwara H, Nakaya T, Takagane A, et al. Roles of thymidylate synthase and dihydropyrimidine dehydrogenase in tumor progression and sensitivity to 5-fluorouracil in human gastric cancer. Anticancer Res 2002;22:761-8.

70. Park JS, YoungYoon S, Kim JM, Yeom YI, Kim YS, et al. Identification of novel genes associated with the response to 5-FU treatment in gastric cancer cell lines using a cDNA microarray. Cancer Lett 2004;214:19-33.

71. Ishikawa Y, Kubota T, Otani Y, Watanabe M, Teramoto T, et al. Dihydropyrimidine dehydrogenase and messenger RNA levels in gastric cancer: possible predictor for sensitivity to 5-fluorouracil. Jpn J Cancer Res 2000;91:105-112.

72. Kodera Y, Ito S, Fujiwara M, Mochizuki Y, Nakayama G, et al. Gene expression of 5- fluorouracil metabolic enzymes in primary gastric cancer: correlation with drug sensitivity against 5- fluorouracil. Cancer Lett 2007;252:307-13.

73. Nishina T, Hyodo I, Miyaike J, Inaba T, Suzuki S, et al. The ratio of thymidine phosphorylase to dihydropyrimidine dehydrogenase in tumour tissues of patients with metastatic gastric cancer is predictive of the clinical response to 5'-deoxy-5-fluorouridine. Eur J Cancer 2004;40:1566-71.

74. Koizumi W, Okayasu I, Hyodo I, Sakamoto J, Kojima H; Clinical Study Group of Capecitabine. Prediction of the effect of capecitabine in gastric cancer by immunohistochemical staining of thymidine phosphorylase and dihydropyrimidine dehydrogenase. Anticancer Drugs 2008;19:819-24.

75. Shimizu T, Yamada Y, Yasui H, Shirao K, Fukuoka M. Clinical application of immunoreactivity of dihydropyrimidine dehydrogenase (DPD) in gastric scirrhous carcinoma treated with S-1, a new DPD inhibitory fluoropyrimidine. Anticancer Res 2005;25:2997-3001.

76. Ichikawa W, Takahashi T, Suto K, Shirota Y, Nihei Z, et al. Simple combinations of 5-FU pathway genes predict the outcome of metastatic gastric cancer patients treated by S-1. Int J Cancer 2006;119:1927-33.

77. Kim JY, Shin E, Kim JW, Lee HS, Lee DW, et al. Impact of intratumoral expression levels of fluoropyrimidine-Metabolizing enzymes on treatment outcomes of adjuvant S-1 therapy in gastric cancer. PloS One 2015;10:e0120324.

78. Sasako M, Terashima M, Ichikawa W, Ochiai A, Kitada K, et al. Impact of the expression of thymidylate synthase and dihydropyrimidine dehydrogenase genes on survival instage II/III gastric cancer. Gastric Cancer 2015;18:538-48.

79. Grau JJ, Caballero M, Monzò M, Muñoz-García C, Domingo-Domenech J, et al. Dihydropyrimidine dehydrogenases and cytidine-deaminase gene polymorphisms as outcome predictors in resected gastric cancer patients treated with fluoropyrimidine adjuvant chemotherapy. J Surg Oncol 2008;98:130-4.

80. Matsubara J, Nishina T, Yamada Y, Moriwaki T, Shimoda T, et al. Impacts of excision repair cross-complementing gene 1 (ERCC1), dihydropyrimidine dehydrogenase, and epidermal growth factor receptor on the outcomes of patients with advanced gastric cancer. Brit J Cancer 2008;98:832-9.

81. Shen XM, Zhou C, Lian L, Li LQ, Li W, et al. Relationship between the DPD and TS mRNA expression and the response to S-1-based chemotherapy and prognosis in patients with advanced gastric cancer. Cell Biochem Biophys 2015;71:1653-61.

82. Koizumi W, Tanabe S, Azuma M, Ishido K, Nishimura K, et al. Impacts of fluorouracil-metabolizing enzymes on the outcomes of patients treated with S-1 alone or S-1 plus cisplatin for first-line treatment of advanced gastric cancer. Int J Cancer 2010;126:162-70.

83. Tahara M, Ochiai A, Fujimoto J, Boku N, Yasui W, et al. Expression of thymidylate synthase, thymidine phosphorylase, dihydropyrimidine dehydrogenase, E2F-1, Bak, Bcl-X, and Bcl-2, and clinical outcomes for gastric cancer patients treated with bolus 5fluorouracil. Oncology Rep 2004;11:9-15.

84. Zhang C, Liu H, Ma B, Song Y, Gao P, et al. The Impact of the Expression Level of Intratumoral Dihydropyrimidine Dehydrogenase on Chemotherapy Sensitivity and Survival of Patients in Gastric Cancer: A Meta-Analysis. Dis Markers 2017;3:1-11.

85. Kondo N, Murakami Y, Uemura K, Sudo T, Hashimoto Y, et al. Prognostic impact of dihydropyrimidine dehydrogenase expression on pancreatic adenocarcinoma patients treated with S-1-based adjuvant chemotherapy after surgical resection. J Surg Oncol 2011;104:146-54.

86. Elander NO, Aughton K, Ghaneh P, Neoptolemos JP, Palmer DH, et al. Expression of dihydropirimidine dehydrogenase (DPD) and hENT1 predicts survival in pancreatic cancer. Brit J Cancer 2018;118:947-54.

87. Nakahara O, Takamori H, Tanaka H, Sakamoto Y, Ikuta Y, et al. Clinical significance of dihydropyrimidine dehydrogenase and thymidylate synthase expression in patients with pancreatic cancer. Int J Clin Oncol 2010;15:39-45.

88. Murakawa M, Aoyama T, Miyagi Y, Atsumi Y, Kazama K, et al. Clinical implications of dihydropyrimidine dehydrogenase expression in patients with pancreatic cancer who undergo curative resection with S-1 adjuvant chemotherapy. Oncol Lett 2017;14:1505-11.

89. Miyake K, Imura S, Yoshizumi T, Ikemoto T, Morine Y, et al. Role of thymidine phosphorylase and orotate phosphoribosyltransferase mRNA expression and its ratio to dihydropyrimidine dehydrogenase in the prognosis and clinico pathological features of patients with pancreatic cancer. Int J Clin Oncol 2007;12:111-9.

90. Saif MW, Hashmi S, Bell D, Diaso RB. Prognostication of pancreatic adenocarcinoma by expression of thymidine phosphorylase/dihydropyrimidine dehydrogenase ratio and its correlation with survival. Expert Opin Drug Saf 2009;8:507-514.

91. Etienne MC, Chéradame S, Fischel JL, Formento P, Dassonville O, et al. Response to fluorouracil therapy in cancer patients: The role of tumoral dihydropyrimidine dehydrogenase activity. J Clin Oncol 1995;13:1663-70.

92. Tsuzuki M, Satomi T, Chiba H. Clinical significance of exression of thymidylate synthase and dihydropyrimidine dehydrogenase in oral squamous cell carcinoma. Oral Med Path 2010;14:135-41.

93. Hasegawa Y, Goto M, Hanai N, Ozawa T, Hirakawa H. Predictive biomarkers for combined chemotherapy with 5-fluorouracil and cisplatin in oro- and hipopharyngeal cancers. Mol Clin Oncol 2018;8:378-86.

94. Yu Z, Yang Q, Sun J, Zhen J. Dihydropirimidine dehydrogenase activity correlates with fluorouracil sensitivity in breast cancer. Exp Oncol 2007;29:192-6.

95. Horiguchi J, Takei H, Koibuchi Y, K Iijima, Ninomiya J, et al. Prognostic significance of dihydropyrimidine dehydrogenase expression in breast cancer. Br J Cancer 2002;86:222-5.

96. Hakamada Y, Tsuchida A, Arima M, Kubouchi T, Tokita H, et al. Prognostic predictors in breast cancer patients with postoperative 5-fluorouracil-based chemotherapy. Int J Mol Med 2005;16:309-14.

97. Tsunoda Y, Suzuki K, Tsunoda A, Takimoto M, Kusano M. Evaluation of 5-fluorouracil related genes in breast cancer to predict the effect of adjuvant therapy with oral fluorouracil derivatives. Oncol Rep 2010;23:771-7.

98. Zhao H, Huang H, Hu Z, Huang Y, Lin SX, et al. Evaluations of biomarkers associated with sensitivity to 5-fluorouracil and taxanes for recurrent/advanced breast cancer patients treated with capecitabine-based first-line chemotherapy. Anticancer Drugs 2012;23:534-42.

99. Qin F, Zhang H, Huang Y, Yang L, Yu F, et al. Effect of dihydropyrimidine dehydrogenase single nucleotide polymorphisms on prognosis of breast cancer patients with chemotherapy. Oncotarget 2017;8:112060-75.

100. Huang CL, Yokomise H, Kobayashi S, Fukushima M, Hitomi S, et al. Intratumoral expression of thymidylate synthase and dihydropyrimidine dehydrogenase in non-small cell lung cancer patients treated with 5-FU-based chemotherapy. Int J Oncol 2000;17:47-54.

101. Okuda K, Tatematsu T, Yano M, Nakamae K, Yamada T, et al. The relationship between the expression of thymidylate synthase, dihydropyrimidine dehydrogenase, orotate phosphoribosyltransferase, excision repair cross-complementation group 1 and class III β-tubulin, and the therapeutic effect of S-1 or carboplatin plus paclitaxel in non-small-cell lung cancer. Mol Clin Onc 2018;9:21-9.

102. Clinical Pharmacogenetics Implemetation Consortium. Available from [Last accessed on 18 Jun 2019].

103. Lunenburg CA, Van Staveren MC, Gelderblom H, Guchelaar HJ, Swen JJ. Evaluation of clinical implementation of prospective DPYD genotyping in 5-fluorouracil- or capecitabine-treated patients. Pharmacogenomics 2016;17:721-9.

104. Opdam FL, Swen JJ, Wessels JA, Gelderblom H. SNPs and haplotypes inDPYD and outcome of capecitabine—letter. Clin Cancer Res 2011;17:5837.

105. Rosmarin D, Palles C, Church D, Domingo E, Jones A, et al. Genetic markers of toxicity from capecitabine and other fluorouracil-based regimens: investigation in the QUASAR2 study, systematic review, and meta-analysis. J Clin Oncol 2014;32:1031-9.

106. Murphy C, Byrne S, Ahmed G, Kenny A, Gallagher J, et al. Cost Implications of Reactive Versus Prospective Testing for Dihydropyrimidine Dehydrogenase Deficiency in Patients With Colorectal Cancer: A Single-Institution Experience. Dose Response 2018;16:1-6.

107. Traorè S, Boisdron-Celle M, Hunault G, André T, Morel A, et al. DPD deficiency: medicoeconomic evaluation of pretreatment screening of 5-FU toxicity. J Clin Oncol 2012;30:410.

108. Scartozzi M, Maccaroni E, Giampieri R, Pistelli M, Bittoni A, et al. 5-Fluorouracil pharmacogenomics: still rocking after all these years? Pharmacogenomics 2011;12:251-65.

Cancer Drug Resistance
ISSN 2578-532X (Online)
Follow Us


All published articles will preserved here permanently:


All published articles will preserved here permanently: