REFERENCES
1. Cameron JL, He J. Two thousand consecutive pancreaticoduodenectomies. J Am Coll Surg. 2015;220:530-6.
2. Vollmer CM Jr, Sanchez N, Gondek S, et al; Pancreatic Surgery Mortality Study Group. A root-cause analysis of mortality following major pancreatectomy. J Gastrointest Surg. 2012;16:89-102; discussion 102.
3. Sachdeva AK, Flynn TC, Brigham TP, et al; American College of Surgeons (ACS) Division of Education. Interventions to address challenges associated with the transition from residency training to independent surgical practice. Surgery. 2014;155:867-82.
4. Hashimoto DA, Rosman G, Rus D, Meireles OR. Artificial intelligence in surgery: promises and perils. Ann Surg. 2018;268:70-6.
5. Maier-Hein L, Vedula SS, Speidel S, et al. Surgical data science for next-generation interventions. Nat Biomed Eng. 2017;1:691-6.
6. Ward TM, Hashimoto DA, Ban Y, et al. Automated operative phase identification in peroral endoscopic myotomy. Surg Endosc. 2021;35:4008-15.
7. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25:44-56.
8. Madani A, Namazi B, Altieri MS, et al. Artificial intelligence for intraoperative guidance: using semantic segmentation to identify surgical anatomy during laparoscopic cholecystectomy. Ann Surg. 2022;276:363-9. [Methods, pp. 364-5].
9. Mascagni P, Alapatt D, Urade T, et al. A computer vision platform to automatically locate critical events in surgical videos: documenting safety in laparoscopic cholecystectomy. Ann Surg. 2021;274:e93-5.
10. Birkmeyer JD, Finks JF, O'Reilly A, et al; Michigan Bariatric Surgery Collaborative. Surgical skill and complication rates after bariatric surgery. N Engl J Med. 2013;369:1434-42.
11. Bektaş M, Zonderhuis BM, Marquering HA, et al. Machine learning algorithms for predicting surgical outcomes after colorectal surgery: a systematic review. World J Surg. 2022;46:3100-10.
12. Lavanchy JL, Zindel J, Kirtac K, et al. Surgical skill assessment using machine learning algorithms. Br J Surg. 2021;108:znab202.093.
13. Madani A, Namazi B, Altieri MS, et al. Artificial intelligence for intraoperative guidance: using semantic segmentation to identify surgical anatomy during laparoscopic cholecystectomy. Ann Surg. 2022;276:363-9. [Results, pp. 366-7].
14. Endo Y, Tokuyasu T, Mori Y, et al. Impact of AI system on recognition for anatomical landmarks related to reducing bile duct injury during laparoscopic cholecystectomy. Surg Endosc. 2023;37:5752-9.
15. Hogg ME, Tam V, Zenati M, et al. Mastery-based virtual reality robotic simulation curriculum: the first step toward operative robotic proficiency. J Surg Educ. 2017;74:477-85.
16. Rashidian N, Giglio MC, Van Herzeele I, et al. Effectiveness of an immersive virtual reality environment on curricular training for complex cognitive skills in liver surgery: a multicentric crossover randomized trial. HPB. 2022;24:2086-95. [Methods, pp. 2087-9].
17. Nota CL, Molenaar IQ, Te Riele WW, van Santvoort HC, Hagendoorn J, Borel Rinkes IHM. Stepwise implementation of robotic surgery in a high volume HPB practice in the Netherlands. HPB. 2020;22:1596-603.
18. Zwart MJW, van den Broek B, de Graaf N, et al; Dutch Pancreatic Cancer Group. The feasibility, proficiency, and mastery learning curves in 635 robotic pancreatoduodenectomies following a multicenter training program: "standing on the shoulders of giants". Ann Surg. 2023;278:e1232-41. [Methods, pp. e1233-5].
19. Brian R, Murillo AD, Gomes C, et al. Artificial intelligence and robotic surgical education. Glob Surg Educ. 2024;3:12.
20. Lavanchy JL, Zindel J, Kirtac K, et al. Automation of surgical skill assessment using a three-stage machine learning algorithm. Sci Rep. 2021;11:5197.
21. Ahmad J. Training in robotic Hepatobiliary and pancreatic surgery: a step up approach. HPB. 2022;24:806-8.
22. Fukumori D, Tschuor C, Penninga L, Hillingsø J, Svendsen LB, Larsen PN. Learning curves in robot-assisted minimally invasive liver surgery at a high-volume center in Denmark: report of the first 100 patients and review of literature. Scand J Surg. 2023;112:164-72.
23. Kawka M, Gall TMH, Hand F, et al. The influence of procedural volume on short-term outcomes for robotic pancreatoduodenectomy - a cohort study and a learning curve analysis. Surg Endosc. 2023;37:4719-27.
24. Primavesi F, Urban I, Bartsch C, et al. Implementing MIS HPB surgery including the first robotic hepatobiliary program in Austria: initial experience and outcomes after 85 cases. HPB. 2023;25:S554-5.
25. Fuentes SMS, Chávez LAF, López EMM, et al. The impact of artificial intelligence in general surgery: enhancing precision, efficiency, and outcomes. Int J Res Med Sci. 2024;12:112-9. Available from: https://www.msjonline.org/index.php/ijrms/article/view/14394 [accessed 30 July 2025].
26. Davis J, Robinson J, Tschuor C, et al. A novel application of cumulative sum (CuSUM) analytics for the objective evaluation of procedure specific technical dexterity in robotic hepatopancreatobiliary surgery. HPB. 2022;24:S24-5.
27. Kirubarajan A, Young D, Khan S, Crasto N, Sobel M, Sussman D. Artificial intelligence and surgical education: a systematic scoping review of interventions. J Surg Educ. 2022;79:500-15.
28. McGivern KG, Drake TM, Knight SR, et al. Applying artificial intelligence to big data in hepatopancreatic and biliary surgery: a scoping review. Artif Intell Surg. 2023;3:98-112.
29. Ward TM, Fer DM, Ban Y, Rosman G, Meireles OR, Hashimoto DA. Challenges in surgical video annotation. Comput Assist Surg. 2021;26:58-68.
30. Jung JJ, Jüni P, Lebovic G, Grantcharov T. First-year analysis of the operating room black box study. Ann Surg. 2020;271:122-7.
31. Collins JW, Marcus HJ, Ghazi A, et al. Ethical implications of AI in robotic surgical training: a Delphi consensus statement. Eur Urol Focus. 2022;8:613-22.
32. Gordon L, Grantcharov T, Rudzicz F. Explainable artificial intelligence for safe intraoperative decision support. JAMA Surg. 2019;154:1064-5.
33. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71.
34. Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000;283:2008-12.
35. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan-a web and mobile app for systematic reviews. Syst Rev. 2016;5:210.
36. Sterne JAC, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:l4898.
37. Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355:i4919.
38. Shea BJ, Reeves BC, Wells G, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ. 2017;358:j4008.
39. Wells GA, Shea B, O’Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa Hospital Research Institute. 2021. Available from: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp [accessed 30 July 2025].
40. Wolff RF, Moons KGM, Riley RD, et al; PROBAST Group†. PROBAST: a tool to assess the risk of bias and applicability of prediction model studies. Ann Intern Med. 2019;170:51-8.
41. Campbell M, McKenzie JE, Sowden A, et al. Synthesis without meta-analysis (SWiM) in systematic reviews: reporting guideline. BMJ. 2020;368:l6890.
42. Guyatt GH, Oxman AD, Vist GE, et al; GRADE Working Group. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336:924-6.
43. Winkler-Schwartz A, Yilmaz R, Mirchi N, et al. Machine learning identification of surgical and operative factors associated with surgical expertise in virtual reality simulation. JAMA Netw Open. 2019;2:e198363.
44. Back E, Häggström J, Holmgren K, et al. Permanent stoma rates after anterior resection for rectal cancer: risk prediction scoring using preoperative variables. Br J Surg. 2021;108:1388-95.
45. Yu F, Silva Croso G, Kim TS, et al. Assessment of automated identification of phases in videos of cataract surgery using machine learning and deep learning techniques. JAMA Netw Open. 2019;2:e191860.
46. Goodman ED, Patel KK, Zhang Y, et al. Analyzing surgical technique in diverse open surgical videos with multitask machine learning. JAMA Surg. 2024;159:185-92.
47. Panteleimonitis S, Miskovic D, Bissett-Amess R, et al; EARCS Collaborative. Short-term clinical outcomes of a European training programme for robotic colorectal surgery. Surg Endosc. 2021;35:6796-806.
48. Wu S, Tang M, Liu J, et al. Impact of an AI-based laparoscopic cholecystectomy coaching program on the surgical performance: a randomized controlled trial. Int J Surg. 2024;110:7816-23.
49. Leifman G, Golany T, Rivlin E, Khoury W, Assalia A, Reissman P. Real-time artificial intelligence validation of critical view of safety in laparoscopic cholecystectomy. Intell Based Med. 2024;4:45-53.
50. Mascagni P, Vardazaryan A, Alapatt D, et al. Artificial intelligence for surgical safety: automatic assessment of the critical view of safety in laparoscopic cholecystectomy using deep learning. Ann Surg. 2022;275:955-61.
51. Korndorffer JR Jr, Hawn MT, Spain DA, et al. Situating artificial intelligence in surgery: a focus on disease severity. Ann Surg. 2020;272:523-8.
52. Rashidian N, Giglio MC, Van Herzeele I, et al. Effectiveness of an immersive virtual reality environment on curricular training for complex cognitive skills in liver surgery: a multicentric crossover randomized trial. HPB. 2022;24:2086-95. [Results, pp. 2090-2].
53. Tashiro Y, Aoki T, Kobayashi N, et al. A novel image-guided laparoscopic liver resection with integrated fluorescent imaging and artificial intelligence: a preliminary study. J Clin Oncol. 2024;42:568.
54. Wang H, Ou Y, Hu P, et al. Application effect of mixed reality in the teaching of hepatobiliary surgery. Chin J Med Educ Res. 2019;41:1230-4. Available from: https://scholar.google.com/scholar?hl=zh-CN&as_sdt=0%2C48&q=Application+effect+of+mixed+reality+in+the+teaching+of+hepatobiliary+surgery&btnG=#d=gs_qabs&t=1753759007709&u=%23p%3Dn0vBcU2TMMoJ [accessed 30 July 2025].
55. Javaheri H, Ghamarnejad O, Widyaningsih R, et al. Enhancing perioperative outcomes of pancreatic surgery with wearable augmented reality assistance system: a matched-pair analysis. Ann Surg Open. 2024;5:e516.
56. Zhu W, Zeng X, Hu H, et al. Perioperative and disease-free survival outcomes after hepatectomy for centrally located hepatocellular carcinoma guided by augmented reality and indocyanine green fluorescence imaging: a single-center experience. J Am Coll Surg. 2023;236:328-37.
57. Magistri P, Guerrini GP, Ballarin R, Assirati G, Tarantino G, Di Benedetto F. Improving outcomes defending patient safety: the learning journey in robotic liver resections. Biomed Res Int. 2019;2019:1835085.
58. Onoe S, Mizuno T, Watanabe N, et al. Utility of modified pancreaticoduodenectomy (Hi-cut PD) for middle-third cholangiocarcinoma: an alternative to hepatopancreaticoduodenectomy. HPB. 2024;26:530-40.
59. Sunakawa T, Kitaguchi D, Kobayashi S, et al. Deep learning-based automatic bleeding recognition during liver resection in laparoscopic hepatectomy. Surg Endosc. 2024;38:7656-62.
60. Twinanda AP, Shehata S, Mutter D, Marescaux J, de Mathelin M, Padoy N. EndoNet: a deep architecture for recognition tasks on laparoscopic videos. IEEE Trans Med Imaging. 2017;36:86-97.
61. Ward TM, Mascagni P, Madani A, Padoy N, Perretta S, Hashimoto DA. Surgical data science and artificial intelligence for surgical education. J Surg Oncol. 2021;124:221-30.
62. Kennedy-Metz LR, Mascagni P, Torralba A, et al. Computer vision in the operating room: opportunities and caveats. IEEE Trans Med Robot Bionics. 2021;3:2-10.
63. Khalid S, Goldenberg M, Grantcharov T, Taati B, Rudzicz F. Evaluation of deep learning models for identifying surgical actions and measuring performance. JAMA Netw Open. 2020;3:e201664.
64. Hung AJ, Chen J, Gill IS. Automated performance metrics and machine learning algorithms to measure surgeon performance and anticipate clinical outcomes in robotic surgery. JAMA Surg. 2018;153:770-1.
65. Wagner M, Bihlmaier A, Kenngott HG, et al. A learning robot for cognitive camera control in minimally invasive surgery. Surg Endosc. 2021;35:5365-74.
66. Birkhoff DC, van Dalen ASHM, Schijven MP. A review on the current applications of artificial intelligence in the operating room. Surg Innov. 2021;28:611-9.
67. Kassahun Y, Yu B, Tibebu AT, et al. Surgical robotics beyond enhanced dexterity instrumentation: a survey of machine learning techniques and their role in intelligent and autonomous surgical actions. Int J Comput Assist Radiol Surg. 2016;11:553-68.
69. Luongo F, Hakim R, Nguyen JH, Anandkumar A, Hung AJ. Deep learning-based computer vision to recognize and classify suturing gestures in robot-assisted surgery. Surgery. 2021;169:1240-4.
70. Mellia JA, Basta MN, Toyoda Y, et al. Natural language processing in surgery: a systematic review and meta-analysis. Ann Surg. 2021;273:900-8.
71. Zwart MJW, van den Broek B, de Graaf N, et al; Dutch Pancreatic Cancer Group. The feasibility, proficiency, and mastery learning curves in 635 robotic pancreatoduodenectomies following a multicenter training program: "standing on the shoulders of giants". Ann Surg. 2023;278:e1232-41. [Results, pp. e1236-9].
72. Hashimoto DA, Rosman G, Witkowski ER, et al. Computer vision analysis of intraoperative video: automated recognition of operative steps in laparoscopic sleeve gastrectomy. Ann Surg. 2019;270:414-21.
74. Procter LD, Davenport DL, Bernard AC, Zwischenberger JB. General surgical operative duration is associated with increased risk-adjusted infectious complication rates and length of hospital stay. J Am Coll Surg. 2010;210:60-5.e1.
75. Birkmeyer JD, Stukel TA, Siewers AE, Goodney PP, Wennberg DE, Lucas FL. Surgeon volume and operative mortality in the United States. N Engl J Med. 2003;349:2117-27.
76. Way LW, Stewart L, Gantert W, et al. Causes and prevention of laparoscopic bile duct injuries: analysis of 252 cases from a human factors and cognitive psychology perspective. Ann Surg. 2003;237:460-9.
77. Flum DR, Dellinger EP, Cheadle A, Chan L, Koepsell T. Intraoperative cholangiography and risk of common bile duct injury during cholecystectomy. JAMA. 2003;289:1639-44.
78. Gao X, Jin Y, Dou Q, Heng PA. Automatic gesture recognition in robot-assisted surgery with reinforcement learning and tree search. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA); 2020 May 31-Aug 31; Paris, France. New York: IEEE; 2020. pp. 8440-6.
79. Schmidt RA, Lee TD, Winstein C, Wulf G, Zelaznik HN. Motor control and learning: a behavioral emphasis. 5th ed. Champaign, IL: Human Kinetics; 2011.
80. Martin JA, Regehr G, Reznick R, et al. Objective structured assessment of technical skill (OSATS) for surgical residents. Br J Surg. 1997;84:273-8.
81. Vassiliou MC, Feldman LS, Andrew CG, et al. A global assessment tool for evaluation of intraoperative laparoscopic skills. Am J Surg. 2005;190:107-13.
82. Stahl CC, Jung SA, Rosser AA, et al. Natural language processing and entrustable professional activity text feedback in surgery: a machine learning model of resident autonomy. Am J Surg. 2021;221:369-75.
83. Bartek MA, Saxena RC, Solomon S, et al. Improving operating room efficiency: machine learning approach to predict case-time duration. J Am Coll Surg. 2019;229:346-54.e3.
84. Schlemper J, Oktay O, Schaap M, et al. Attention gated networks: learning to leverage salient regions in medical images. Med Image Anal. 2019;53:197-207.
85. Ericsson KA. Deliberate practice and the acquisition and maintenance of expert performance in medicine and related domains. Acad Med. 2004;79:S70-81.
86. Moglia A, Ferrari V, Morelli L, Ferrari M, Mosca F, Cuschieri A. A systematic review of virtual reality simulators for robot-assisted surgery. Eur Urol. 2016;69:1065-80.
87. Vedula SS, Ishii M, Hager GD. Objective assessment of surgical technical skill and competency in the operating room. Annu Rev Biomed Eng. 2017;19:301-25.
88. Frank JR, Snell LS, Cate OT, et al. Competency-based medical education: theory to practice. Med Teach. 2010;32:638-45.
89. Childers CP, Maggard-Gibbons M. Understanding costs of care in the operating room. JAMA Surg. 2018;153:e176233.
90. Spanjersberg WR, Reurings J, Keus F, van Laarhoven CJ. Fast track surgery versus conventional recovery strategies for colorectal surgery. Cochrane Database Syst Rev. ;2011:CD007635.
91. Stefanidis D, Sevdalis N, Paige J, et al; Association for Surgical Education Simulation Committee. Simulation in surgery: what’s needed next? Ann Surg. 2015;261:846-53.
92. Strasberg SM. A three-step conceptual roadmap for avoiding bile duct injury in laparoscopic cholecystectomy: an invited perspective review. J Hepatobiliary Pancreat Sci. 2019;26:123-7.
93. Pucher PH, Aggarwal R, Qurashi M, Darzi A. Meta-analysis of the effect of postoperative in-hospital morbidity on long-term patient survival. Br J Surg. 2014;101:1499-508.
94. Winkler-Schwartz A, Bissonnette V, Mirchi N, et al. Artificial intelligence in medical education: best practices using machine learning to assess surgical expertise in virtual reality simulation. J Surg Educ. 2019;76:1681-90.
95. Lam K, Chen J, Wang Z, et al. Machine learning for technical skill assessment in surgery: a systematic review. NPJ Digit Med. 2022;5:24.
96. Park A, Lee G, Seagull FJ, Meenaghan N, Dexter D. Patients benefit while surgeons suffer: an impending epidemic. J Am Coll Surg. 2010;210:306-13.
97. Fitts PM, Posner MI. Human performance. Belmont, CA: Brooks/Cole; 1967.
98. Cate O. Competency-based postgraduate medical education: past, present and future. GMS J Med Educ. 2017;34:Doc69.
99. Bilgic E, Turkdogan S, Watanabe Y, et al. Effectiveness of telementoring in surgery compared with on-site mentoring: a systematic review. Surg Innov. 2017;24:379-85.
100. Stewart LA, Clarke M, Rovers M, et al; PRISMA-IPD Development Group. Preferred reporting items for systematic review and meta-analyses of individual participant data: the PRISMA-IPD statement. JAMA. 2015;313:1657-65.
101. Kirkham JJ, Davis K, Altman DG, et al. Core outcome set-STAndards for development: the COS-STAD recommendations. PLoS Med. 2017;14:e1002447.
102. Barkun JS, Aronson JK, Feldman LS, et al; Balliol Collaboration. Evaluation and stages of surgical innovations. Lancet. 2009;374:1089-96.
103. Peters DH, Adam T, Alonge O, Agyepong IA, Tran N. Implementation research: what it is and how to do it. BMJ. ;347:f6753.
104. Husereau D, Drummond M, Petrou S, et al; CHEERS Task Force. Consolidated Health Economic Evaluation Reporting Standards (CHEERS) statement. BMJ. 2013;346:f1049.
105. Li T, Sahu AK, Talwalkar A, Smith V. Federated learning: challenges, methods, and future directions. IEEE Signal Process Mag. 2020;37:50-60.
106. Holzinger A, Langs G, Denk H, Zatloukal K, Müller H. Causability and explainability of artificial intelligence in medicine. Wiley Interdiscip Rev Data Min Knowl Discov. 2019;9:e1312.
107. Tao F, Zhang H, Liu A, Nee AYC. Digital twin in industry: state-of-the-art. IEEE Trans Ind Inf. 2019;15:2405-15.
108. Arute F, Arya K, Babbush R, et al. Quantum supremacy using a programmable superconducting processor. Nature. 2019;574:505-10.