REFERENCES

1. McCarthy J. What is artificial intelligence? 2004. Available from: https://cse.unl.edu/~choueiry/S09-476-876/Documents/whatisai.pdf. [Last accessed on 24 May 2024].

2. Yu KH, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nat Biomed Eng 2018;2:719-31.

3. Jha S, Topol EJ. Adapting to artificial intelligence: radiologists and pathologists as information specialists. JAMA 2016;316:2353-4.

4. Placona AM, Martinez C, McGehee H, Carrico B, Klassen DK, Stewart D. Can donor narratives yield insights? A natural language processing proof of concept to facilitate kidney allocation. Am J Transplant 2020;20:1095-104.

5. Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med 2019;17:195.

6. Hua KL, Hsu CH, Hidayati SC, Cheng WH, Chen YJ. Computer-aided classification of lung nodules on computed tomography images via deep learning technique. Onco Targets Ther 2015;8:2015-22.

7. Jiang Z, Gandomkar Z, Trieu PDY, et al. Evaluating recalibrating AI models for breast cancer diagnosis in a new context: insights from transfer learning, image enhancement and high-quality training data integration. Cancers 2024;16:322.

8. Escobar GJ, Turk BJ, Ragins A, et al. Piloting electronic medical record-based early detection of inpatient deterioration in community hospitals. J Hosp Med 2016;11:S18-24.

9. Rajkomar A, Oren E, Chen K, et al. Scalable and accurate deep learning with electronic health records. NPJ Digit Med 2018;1:18.

10. Xu J, Yang P, Xue S, et al. Translating cancer genomics into precision medicine with artificial intelligence: applications, challenges and future perspectives. Hum Genet 2019;138:109-24.

11. Foster JC, Taylor JM, Ruberg SJ. Subgroup identification from randomized clinical trial data. Stat Med 2011;30:2867-80.

12. Interpretable AI. Optimal decision trees. Available from: https://www.interpretable.ai/products/optimal-trees/. [Last accessed on 24 May 2024].

13. Endo Y, Alaimo L, Moazzam Z, et al. Postoperative morbidity after simultaneous versus staged resection of synchronous colorectal liver metastases: impact of hepatic tumor burden. Surgery 2024;175:432-40.

14. Endo Y, Alaimo L, Moazzam Z, et al. Optimal policy tree to assist in adjuvant therapy decision-making after resection of colorectal liver metastases. Surgery 2024;175:645-53.

15. Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade RK. Artificial intelligence in drug discovery and development. Drug Discov Today 2021;26:80-93.

16. Sageshima J, Than P, Goussous N, Mineyev N, Perez R. Prediction of high-risk donors for kidney discard and nonrecovery using structured donor characteristics and unstructured donor narratives. JAMA Surg 2024;159:60-8.

17. Wahl B, Cossy-Gantner A, Germann S, Schwalbe NR. Artificial intelligence (AI) and global health: how can AI contribute to health in resource-poor settings? BMJ Glob Health 2018;3:e000798.

18. Mollica V, Rizzo A, Marchetti A, et al. The impact of ECOG performance status on efficacy of immunotherapy and immune-based combinations in cancer patients: the MOUSEION-06 study. Clin Exp Med 2023;23:5039-49.

19. Gong X, Hu M, Zhao L. Big data toolsets to pharmacometrics: application of machine learning for time-to-event analysis. Clin Transl Sci 2018;11:305-11.

20. Barber EL, Garg R, Persenaire C, Simon M. Natural language processing with machine learning to predict outcomes after ovarian cancer surgery. Gynecol Oncol 2021;160:182-6.

21. Resende V, Tsilimigras DI, Endo Y, et al. Machine-based learning hierarchical cluster analysis: sex-based differences in prognosis following resection of hepatocellular carcinoma. World J Surg 2023;47:3319-27.

22. Boulesteix AL, Janitza S, Kruppa J, König IR. Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics. WIREs Data Mining Knowl Discov 2012;2:493-507.

23. Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Statist 2001;29:1189-232.

24. Lai Q, Spoletini G, Mennini G, et al. Prognostic role of artificial intelligence among patients with hepatocellular cancer: a systematic review. World J Gastroenterol 2020;26:6679-88.

25. Cover T, Hart P. Nearest neighbor pattern classification. IEEE Trans Inform Theory 1967;13:21-7.

26. Patel H, Zanos T, Hewitt DB. Deep learning applications in pancreatic cancer. Cancers 2024;16:436.

27. Wakabayashi T, Ouhmich F, Gonzalez-Cabrera C, et al. Radiomics in hepatocellular carcinoma: a quantitative review. Hepatol Int 2019;13:546-59.

28. Endo Y, Sasaki K, Moazzam Z, et al. Quality of ChatGPT responses to questions related to liver transplantation. J Gastrointest Surg 2023;27:1716-9.

29. Rajkomar A, Kannan A, Chen K, et al. Automatically charting symptoms from patient-physician conversations using machine learning. JAMA Intern Med 2019;179:836-8.

30. Moazzam Z, Lima HA, Endo Y, Noria S, Needleman B, Pawlik TM. A Paradigm shift: online artificial intelligence platforms as an informational resource in bariatric surgery. Obes Surg 2023;33:2611-4.

31. Ali SR, Dobbs TD, Tarafdar A, et al. Natural language processing to automate a web-based model of care and modernize skin cancer multidisciplinary team meetings. Br J Surg 2024;111:znad347.

32. Bcharah G, Gupta N, Panico N, et al. Innovations in spine surgery: a narrative review of current integrative technologies. World Neurosurg 2024;184:127-36.

33. Choksi S, Szot S, Zang C, et al. Bringing Artificial Intelligence to the operating room: edge computing for real-time surgical phase recognition. Surg Endosc 2023;37:8778-84.

34. Takeuchi M, Kawakubo H, Saito K, et al. Automated surgical-phase recognition for robot-assisted minimally invasive esophagectomy using artificial intelligence. Ann Surg Oncol 2022;29:6847-55.

35. Reig M, Forner A, Rimola J, et al. BCLC strategy for prognosis prediction and treatment recommendation: the 2022 update. J Hepatol 2022;76:681-93.

36. Matsumoto M, Yanaga K, Shiba H, et al. Treatment of intrahepatic recurrence after hepatectomy for hepatocellular carcinoma. Ann Gastroenterol Surg 2021;5:538-52.

37. Famularo S, Donadon M, Cipriani F, et al; HE.RC.O.LE.S. Group. Machine learning predictive model to guide treatment allocation for recurrent hepatocellular carcinoma after surgery. JAMA Surg 2023;158:192-202.

38. Moazzam Z, Alaimo L, Endo Y, et al. A prognostic model to predict survival after recurrence among patients with recurrent hepatocellular carcinoma. Ann Surg 2024;279:471-8.

39. Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Ser B Stat Method 1996;58:267-88.

40. Wang K, Xiang Y, Yan J, et al. A deep learning model with incorporation of microvascular invasion area as a factor in predicting prognosis of hepatocellular carcinoma after R0 hepatectomy. Hepatol Int 2022;16:1188-98.

41. Ji GW, Fan Y, Sun DW, et al. Machine learning to improve prognosis prediction of early hepatocellular carcinoma after surgical resection. J Hepatocell Carcinoma 2021;8:913-23.

42. Iseke S, Zeevi T, Kucukkaya AS, et al. Machine learning models for prediction of posttreatment recurrence in early-stage hepatocellular carcinoma using pretreatment clinical and MRI features: a proof-of-concept study. AJR Am J Roentgenol 2023;220:245-55.

43. Saillard C, Schmauch B, Laifa O, et al. Predicting survival after hepatocellular carcinoma resection using deep learning on histological slides. Hepatology 2020;72:2000-13.

44. Endo Y, Alaimo L, Lima HA, et al. A novel online calculator to predict risk of microvascular invasion in the preoperative setting for hepatocellular carcinoma patients undergoing curative-intent surgery. Ann Surg Oncol 2023;30:725-33.

45. Yao S, Ye Z, Wei Y, Jiang HY, Song B. Radiomics in hepatocellular carcinoma: a state-of-the-art review. World J Gastrointest Oncol 2021;13:1599-615.

46. Lewis S, Hectors S, Taouli B. Radiomics of hepatocellular carcinoma. Abdom Radiol 2021;46:111-23.

47. Ma X, Wei J, Gu D, et al. Preoperative radiomics nomogram for microvascular invasion prediction in hepatocellular carcinoma using contrast-enhanced CT. Eur Radiol 2019;29:3595-605.

48. Zhu YJ, Feng B, Wang S, et al. Model-based three-dimensional texture analysis of contrast-enhanced magnetic resonance imaging as a potential tool for preoperative prediction of microvascular invasion in hepatocellular carcinoma. Oncol Lett 2019;18:720-32.

49. Jiang YQ, Cao SE, Cao S, et al. Preoperative identification of microvascular invasion in hepatocellular carcinoma by XGBoost and deep learning. J Cancer Res Clin Oncol 2021;147:821-33.

50. American Cancer Society. Key statistics for bile duct cancer. Available from: https://www.cancer.org/cancer/types//bile-duct-cancer/about/key-statistics.html. [Last accessed on 24 May 2024].

51. Alaimo L, Lima HA, Moazzam Z, et al. Development and validation of a machine-learning model to predict early recurrence of intrahepatic cholangiocarcinoma. Ann Surg Oncol 2023;30:5406-15.

52. Sasaki K, Morioka D, Conci S, et al. The tumor burden score: a new “metro-ticket” prognostic tool for colorectal liver metastases based on tumor size and number of tumors. Ann Surg 2018;267:132-41.

53. Cotter G, Beal EW, Poultsides GA, et al. Using machine learning to preoperatively stratify prognosis among patients with gallbladder cancer: a multi-institutional analysis. HPB 2022;24:1980-8.

54. Tsilimigras DI, Hyer JM, Paredes AZ, et al. A novel classification of intrahepatic cholangiocarcinoma phenotypes using machine learning techniques: an international multi-institutional analysis. Ann Surg Oncol 2020;27:5224-32.

55. Chen B, Mao Y, Li J, et al. Predicting very early recurrence in intrahepatic cholangiocarcinoma after curative hepatectomy using machine learning radiomics based on CECT: a multi-institutional study. Comput Biol Med 2023;167:107612.

56. Endo Y, Moazzam Z, Lima HA, et al. The impact of tumor location on the value of lymphadenectomy for intrahepatic cholangiocarcinoma. HPB 2023;25:650-8.

57. Mueller M, Breuer E, Mizuno T, et al. Perihilar cholangiocarcinoma - novel benchmark values for surgical and oncological outcomes from 24 expert centers. Ann Surg 2021;274:780-8.

58. van Keulen AM, Buettner S, Erdmann JI, et al; perihilar cholangiocarcinoma collaboration group. Multivariable prediction model for both 90-day mortality and long-term survival for individual patients with perihilar cholangiocarcinoma: does the predicted survival justify the surgical risk? Br J Surg 2023;110:599-605.

59. Ratti F, Marino R, Olthof PB, et al; Perihilar Cholangiocarcinoma Collaboration Group. Predicting futility of upfront surgery in perihilar cholangiocarcinoma: Machine learning analytics model to optimize treatment allocation. Hepatology 2024;79:341-54.

60. Alaimo L, Moazzam Z, Endo Y, et al. The application of artificial intelligence to investigate long-term outcomes and assess optimal margin width in hepatectomy for intrahepatic cholangiocarcinoma. Ann Surg Oncol 2023;30:4292-301.

61. Laplante S, Namazi B, Kiani P, et al. Validation of an artificial intelligence platform for the guidance of safe laparoscopic cholecystectomy. Surg Endosc 2023;37:2260-8.

62. Madani A, Namazi B, Altieri MS, et al. Artificial intelligence for intraoperative guidance: using semantic segmentation to identify surgical anatomy during laparoscopic cholecystectomy. Ann Surg 2022;276:363-9.

63. Alaimo L, Endo Y, Lima HA, et al. A comprehensive preoperative predictive score for post-hepatectomy liver failure after hepatocellular carcinoma resection based on patient comorbidities, tumor burden, and liver function: the CTF score. J Gastrointest Surg 2022;26:2486-95.

64. Winkel DJ, Weikert TJ, Breit HC, et al. Validation of a fully automated liver segmentation algorithm using multi-scale deep reinforcement learning and comparison versus manual segmentation. Eur J Radiol 2020;126:108918.

65. Ruzzenente A, Alaimo L, D’Onofrio M, et al. Perihilar cholangiocarcinoma: three-dimensional modelling algorithm to estimate tumour extension and bile duct resection margins. Br J Surg 2024;111:znad428.

66. Tomiyama K, Ghazi A, Hernandez-Alejandro R. Looking beyond the horizon: patient-specific rehearsals for complex liver surgeries with 3D printed model. Ann Surg 2021;273:e28-30.

67. Ntourakis D, Memeo R, Soler L, Marescaux J, Mutter D, Pessaux P. Augmented reality guidance for the resection of missing colorectal liver metastases: an initial experience. World J Surg 2016;40:419-26.

68. Pessaux P, Diana M, Soler L, Piardi T, Mutter D, Marescaux J. Towards cybernetic surgery: robotic and augmented reality-assisted liver segmentectomy. Langenbecks Arch Surg 2015;400:381-5.

69. Ossa L, Lorenzini G, Milford SR, Shaw D, Elger BS, Rost M. Integrating ethics in AI development: a qualitative study. BMC Med Ethics 2024;25:10.

Artificial Intelligence Surgery
ISSN 2771-0408 (Online)
Follow Us

Portico

All published articles will be preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles will be preserved here permanently:

https://www.portico.org/publishers/oae/