2. Yu KH, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nat Biomed Eng 2018;2:719-31.
3. Jha S, Topol EJ. Adapting to artificial intelligence: radiologists and pathologists as information specialists. JAMA 2016;316:2353-4.
4. Placona AM, Martinez C, McGehee H, Carrico B, Klassen DK, Stewart D. Can donor narratives yield insights? A natural language processing proof of concept to facilitate kidney allocation. Am J Transplant 2020;20:1095-104.
5. Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med 2019;17:195.
6. Hua KL, Hsu CH, Hidayati SC, Cheng WH, Chen YJ. Computer-aided classification of lung nodules on computed tomography images via deep learning technique. Onco Targets Ther 2015;8:2015-22.
7. Jiang Z, Gandomkar Z, Trieu PDY, et al. Evaluating recalibrating AI models for breast cancer diagnosis in a new context: insights from transfer learning, image enhancement and high-quality training data integration. Cancers 2024;16:322.
8. Escobar GJ, Turk BJ, Ragins A, et al. Piloting electronic medical record-based early detection of inpatient deterioration in community hospitals. J Hosp Med 2016;11:S18-24.
9. Rajkomar A, Oren E, Chen K, et al. Scalable and accurate deep learning with electronic health records. NPJ Digit Med 2018;1:18.
10. Xu J, Yang P, Xue S, et al. Translating cancer genomics into precision medicine with artificial intelligence: applications, challenges and future perspectives. Hum Genet 2019;138:109-24.
11. Foster JC, Taylor JM, Ruberg SJ. Subgroup identification from randomized clinical trial data. Stat Med 2011;30:2867-80.
13. Endo Y, Alaimo L, Moazzam Z, et al. Postoperative morbidity after simultaneous versus staged resection of synchronous colorectal liver metastases: impact of hepatic tumor burden. Surgery 2024;175:432-40.
14. Endo Y, Alaimo L, Moazzam Z, et al. Optimal policy tree to assist in adjuvant therapy decision-making after resection of colorectal liver metastases. Surgery 2024;175:645-53.
15. Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade RK. Artificial intelligence in drug discovery and development. Drug Discov Today 2021;26:80-93.
16. Sageshima J, Than P, Goussous N, Mineyev N, Perez R. Prediction of high-risk donors for kidney discard and nonrecovery using structured donor characteristics and unstructured donor narratives. JAMA Surg 2024;159:60-8.
17. Wahl B, Cossy-Gantner A, Germann S, Schwalbe NR. Artificial intelligence (AI) and global health: how can AI contribute to health in resource-poor settings? BMJ Glob Health 2018;3:e000798.
18. Mollica V, Rizzo A, Marchetti A, et al. The impact of ECOG performance status on efficacy of immunotherapy and immune-based combinations in cancer patients: the MOUSEION-06 study. Clin Exp Med 2023;23:5039-49.
19. Gong X, Hu M, Zhao L. Big data toolsets to pharmacometrics: application of machine learning for time-to-event analysis. Clin Transl Sci 2018;11:305-11.
20. Barber EL, Garg R, Persenaire C, Simon M. Natural language processing with machine learning to predict outcomes after ovarian cancer surgery. Gynecol Oncol 2021;160:182-6.
21. Resende V, Tsilimigras DI, Endo Y, et al. Machine-based learning hierarchical cluster analysis: sex-based differences in prognosis following resection of hepatocellular carcinoma. World J Surg 2023;47:3319-27.
22. Boulesteix AL, Janitza S, Kruppa J, König IR. Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics. WIREs Data Mining Knowl Discov 2012;2:493-507.
23. Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Statist 2001;29:1189-232.
24. Lai Q, Spoletini G, Mennini G, et al. Prognostic role of artificial intelligence among patients with hepatocellular cancer: a systematic review. World J Gastroenterol 2020;26:6679-88.
25. Cover T, Hart P. Nearest neighbor pattern classification. IEEE Trans Inform Theory 1967;13:21-7.
26. Patel H, Zanos T, Hewitt DB. Deep learning applications in pancreatic cancer. Cancers 2024;16:436.
27. Wakabayashi T, Ouhmich F, Gonzalez-Cabrera C, et al. Radiomics in hepatocellular carcinoma: a quantitative review. Hepatol Int 2019;13:546-59.
28. Endo Y, Sasaki K, Moazzam Z, et al. Quality of ChatGPT responses to questions related to liver transplantation. J Gastrointest Surg 2023;27:1716-9.
29. Rajkomar A, Kannan A, Chen K, et al. Automatically charting symptoms from patient-physician conversations using machine learning. JAMA Intern Med 2019;179:836-8.
30. Moazzam Z, Lima HA, Endo Y, Noria S, Needleman B, Pawlik TM. A Paradigm shift: online artificial intelligence platforms as an informational resource in bariatric surgery. Obes Surg 2023;33:2611-4.
31. Ali SR, Dobbs TD, Tarafdar A, et al. Natural language processing to automate a web-based model of care and modernize skin cancer multidisciplinary team meetings. Br J Surg 2024;111:znad347.
32. Bcharah G, Gupta N, Panico N, et al. Innovations in spine surgery: a narrative review of current integrative technologies. World Neurosurg 2024;184:127-36.
33. Choksi S, Szot S, Zang C, et al. Bringing Artificial Intelligence to the operating room: edge computing for real-time surgical phase recognition. Surg Endosc 2023;37:8778-84.
34. Takeuchi M, Kawakubo H, Saito K, et al. Automated surgical-phase recognition for robot-assisted minimally invasive esophagectomy using artificial intelligence. Ann Surg Oncol 2022;29:6847-55.
35. Reig M, Forner A, Rimola J, et al. BCLC strategy for prognosis prediction and treatment recommendation: the 2022 update. J Hepatol 2022;76:681-93.
36. Matsumoto M, Yanaga K, Shiba H, et al. Treatment of intrahepatic recurrence after hepatectomy for hepatocellular carcinoma. Ann Gastroenterol Surg 2021;5:538-52.
37. Famularo S, Donadon M, Cipriani F, et al; HE.RC.O.LE.S. Group. Machine learning predictive model to guide treatment allocation for recurrent hepatocellular carcinoma after surgery. JAMA Surg 2023;158:192-202.
38. Moazzam Z, Alaimo L, Endo Y, et al. A prognostic model to predict survival after recurrence among patients with recurrent hepatocellular carcinoma. Ann Surg 2024;279:471-8.
39. Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Ser B Stat Method 1996;58:267-88.
40. Wang K, Xiang Y, Yan J, et al. A deep learning model with incorporation of microvascular invasion area as a factor in predicting prognosis of hepatocellular carcinoma after R0 hepatectomy. Hepatol Int 2022;16:1188-98.
41. Ji GW, Fan Y, Sun DW, et al. Machine learning to improve prognosis prediction of early hepatocellular carcinoma after surgical resection. J Hepatocell Carcinoma 2021;8:913-23.
42. Iseke S, Zeevi T, Kucukkaya AS, et al. Machine learning models for prediction of posttreatment recurrence in early-stage hepatocellular carcinoma using pretreatment clinical and MRI features: a proof-of-concept study. AJR Am J Roentgenol 2023;220:245-55.
43. Saillard C, Schmauch B, Laifa O, et al. Predicting survival after hepatocellular carcinoma resection using deep learning on histological slides. Hepatology 2020;72:2000-13.
44. Endo Y, Alaimo L, Lima HA, et al. A novel online calculator to predict risk of microvascular invasion in the preoperative setting for hepatocellular carcinoma patients undergoing curative-intent surgery. Ann Surg Oncol 2023;30:725-33.
45. Yao S, Ye Z, Wei Y, Jiang HY, Song B. Radiomics in hepatocellular carcinoma: a state-of-the-art review. World J Gastrointest Oncol 2021;13:1599-615.
46. Lewis S, Hectors S, Taouli B. Radiomics of hepatocellular carcinoma. Abdom Radiol 2021;46:111-23.
47. Ma X, Wei J, Gu D, et al. Preoperative radiomics nomogram for microvascular invasion prediction in hepatocellular carcinoma using contrast-enhanced CT. Eur Radiol 2019;29:3595-605.
48. Zhu YJ, Feng B, Wang S, et al. Model-based three-dimensional texture analysis of contrast-enhanced magnetic resonance imaging as a potential tool for preoperative prediction of microvascular invasion in hepatocellular carcinoma. Oncol Lett 2019;18:720-32.
49. Jiang YQ, Cao SE, Cao S, et al. Preoperative identification of microvascular invasion in hepatocellular carcinoma by XGBoost and deep learning. J Cancer Res Clin Oncol 2021;147:821-33.
51. Alaimo L, Lima HA, Moazzam Z, et al. Development and validation of a machine-learning model to predict early recurrence of intrahepatic cholangiocarcinoma. Ann Surg Oncol 2023;30:5406-15.
52. Sasaki K, Morioka D, Conci S, et al. The tumor burden score: a new “metro-ticket” prognostic tool for colorectal liver metastases based on tumor size and number of tumors. Ann Surg 2018;267:132-41.
53. Cotter G, Beal EW, Poultsides GA, et al. Using machine learning to preoperatively stratify prognosis among patients with gallbladder cancer: a multi-institutional analysis. HPB 2022;24:1980-8.
54. Tsilimigras DI, Hyer JM, Paredes AZ, et al. A novel classification of intrahepatic cholangiocarcinoma phenotypes using machine learning techniques: an international multi-institutional analysis. Ann Surg Oncol 2020;27:5224-32.
55. Chen B, Mao Y, Li J, et al. Predicting very early recurrence in intrahepatic cholangiocarcinoma after curative hepatectomy using machine learning radiomics based on CECT: a multi-institutional study. Comput Biol Med 2023;167:107612.
56. Endo Y, Moazzam Z, Lima HA, et al. The impact of tumor location on the value of lymphadenectomy for intrahepatic cholangiocarcinoma. HPB 2023;25:650-8.
57. Mueller M, Breuer E, Mizuno T, et al. Perihilar cholangiocarcinoma - novel benchmark values for surgical and oncological outcomes from 24 expert centers. Ann Surg 2021;274:780-8.
58. van Keulen AM, Buettner S, Erdmann JI, et al; perihilar cholangiocarcinoma collaboration group. Multivariable prediction model for both 90-day mortality and long-term survival for individual patients with perihilar cholangiocarcinoma: does the predicted survival justify the surgical risk? Br J Surg 2023;110:599-605.
59. Ratti F, Marino R, Olthof PB, et al; Perihilar Cholangiocarcinoma Collaboration Group. Predicting futility of upfront surgery in perihilar cholangiocarcinoma: Machine learning analytics model to optimize treatment allocation. Hepatology 2024;79:341-54.
60. Alaimo L, Moazzam Z, Endo Y, et al. The application of artificial intelligence to investigate long-term outcomes and assess optimal margin width in hepatectomy for intrahepatic cholangiocarcinoma. Ann Surg Oncol 2023;30:4292-301.
61. Laplante S, Namazi B, Kiani P, et al. Validation of an artificial intelligence platform for the guidance of safe laparoscopic cholecystectomy. Surg Endosc 2023;37:2260-8.
62. Madani A, Namazi B, Altieri MS, et al. Artificial intelligence for intraoperative guidance: using semantic segmentation to identify surgical anatomy during laparoscopic cholecystectomy. Ann Surg 2022;276:363-9.
63. Alaimo L, Endo Y, Lima HA, et al. A comprehensive preoperative predictive score for post-hepatectomy liver failure after hepatocellular carcinoma resection based on patient comorbidities, tumor burden, and liver function: the CTF score. J Gastrointest Surg 2022;26:2486-95.
64. Winkel DJ, Weikert TJ, Breit HC, et al. Validation of a fully automated liver segmentation algorithm using multi-scale deep reinforcement learning and comparison versus manual segmentation. Eur J Radiol 2020;126:108918.
65. Ruzzenente A, Alaimo L, D’Onofrio M, et al. Perihilar cholangiocarcinoma: three-dimensional modelling algorithm to estimate tumour extension and bile duct resection margins. Br J Surg 2024;111:znad428.
66. Tomiyama K, Ghazi A, Hernandez-Alejandro R. Looking beyond the horizon: patient-specific rehearsals for complex liver surgeries with 3D printed model. Ann Surg 2021;273:e28-30.
67. Ntourakis D, Memeo R, Soler L, Marescaux J, Mutter D, Pessaux P. Augmented reality guidance for the resection of missing colorectal liver metastases: an initial experience. World J Surg 2016;40:419-26.
68. Pessaux P, Diana M, Soler L, Piardi T, Mutter D, Marescaux J. Towards cybernetic surgery: robotic and augmented reality-assisted liver segmentectomy. Langenbecks Arch Surg 2015;400:381-5.
69. Ossa L, Lorenzini G, Milford SR, Shaw D, Elger BS, Rost M. Integrating ethics in AI development: a qualitative study. BMC Med Ethics 2024;25:10.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.