REFERENCES
1. Holubec T, Dahle G, Bonaros N. Editorial: Minimally invasive cardiac surgery: state of the art and current challenges. Front Cardiovasc Med. 2023;10:1286868.
2. Ilcheva L, Risteski P, Tudorache I, et al. Beyond conventional operations: embracing the era of contemporary minimally invasive cardiac surgery. J Clin Med. 2023;12:7210.
3. Dieberg G, Smart NA, King N. Minimally invasive cardiac surgery: a systematic review and meta-analysis. Int J Cardiol. 2016;223:554-60.
4. Reuthebuch O, Stein A, Koechlin L, et al. Five-year survival of patients treated with minimally invasive direct coronary artery bypass (MIDCAB) compared with the general swiss population. Thorac Cardiovasc Surg. 2024;72:404-12.
5. Claessens J, Rottiers R, Vandenbrande J, et al. Quality of life in patients undergoing minimally invasive cardiac surgery: a systematic review. Indian J Thorac Cardiovasc Surg. 2023;39:367-80.
6. Vahanian A, Beyersdorf F, Praz F, et al; ESC/EACTS Scientific Document Group. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J. 2022;43:561-632.
7. Neumann FJ, Sousa-Uva M, Ahlsson A, et al; ESC Scientific Document Group. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J. 2019;40:87-165.
8. Virani SS, Newby LK, Arnold SV, et al; Peer Review Committee Members. 2023 AHA/ACC/ACCP/ASPC/NLA/PCNA Guideline for the Management Of Patients With Chronic Coronary Disease: a report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. Circulation. 2023;148:e9-119.
9. Zhuo DX, Bilchick KC, Shah KP, et al. MAGGIC, STS, and EuroSCORE II risk score comparison after aortic and mitral valve surgery. J Cardiothorac Vasc Anesth. 2021;35:1806-12.
10. Bradbury JL, Rodrigues TS, Kumarasiri M, et al. Utility of the Euroscore II in predicting long-term outcomes in a contemporary Australian cohort with complex coronary artery disease. Am J Cardiol. 2025;256:18-22.
11. Shahian DM, Blackstone EH, Edwards FH, et al; STS workforce on evidence-based surgery. Cardiac surgery risk models: a position article. Ann Thorac Surg. 2004;78:1868-77.
12. Kuplay H, Bayer Erdoğan S, Baştopçu M, Karpuzoğlu E, Er H. Performance of the EuroSCORE II and the STS score for cardiac surgery in octogenarians. Turk Gogus Kalp Damar Cerrahisi Derg. 2021;29:174-82.
13. Espinoza Romero C, Rosa VEE, Octavio Kormann S, et al. Impact of a new preoperative stratification based on cardiac structural compromise in patients with severe aortic stenosis undergoing valve replacement surgery. Diagnostics. 2024;14:2250.
14. Prins C, de Villiers Jonker I, Botes L, Smit FE. Cardiac surgery risk-stratification models. Cardiovasc J Afr. 2012;23:160-4.
15. Gao F, Shan L, Wang C, et al. Predictive ability of European Heart Surgery Risk Assessment System II (EuroSCORE II) and the Society of Thoracic Surgeons (STS) score for in-hospital and medium-term mortality of patients undergoing coronary artery bypass grafting. Int J Gen Med. 2021;14:8509-19.
16. Argus L, Taylor M, Ouzounian M, Venkateswaran R, Grant SW. Risk prediction models for long-term survival after cardiac surgery: a systematic review. Thorac Cardiovasc Surg. 2024;72:29-39.
17. Khera R, Oikonomou EK, Nadkarni GN, et al. Transforming cardiovascular care with artificial intelligence: from discovery to practice: JACC state-of-the-art review. J Am Coll Cardiol. 2024;84:97-114.
18. Sulague RM, Beloy FJ, Medina JR, et al. Artificial intelligence in cardiac surgery: a systematic review. World J Surg. 2024;48:2073-89.
19. Amin A, Cardoso SA, Suyambu J, et al. Future of artificial intelligence in surgery: a narrative review. Cureus. 2024;16:e51631.
20. Hassan AM, Rajesh A, Asaad M, et al. Artificial intelligence and machine learning in prediction of surgical complications: current state, applications, and implications. Am Surg. 2023;89:25-30.
21. Kokkinakis S, Kritsotakis EI, Lasithiotakis K. Artificial intelligence in surgical risk prediction. J Clin Med. 2023;12:4016.
22. Bignami EG, Cozzani F, Del Rio P, Bellini V. The role of artificial intelligence in surgical patient perioperative management. Minerva Anestesiol. 2021;87:817-22.
23. Yoon HK, Yang HL, Jung CW, Lee HC. Artificial intelligence in perioperative medicine: a narrative review. Korean J Anesthesiol. 2022;75:202-15.
24. Kenig N, Monton Echeverria J, Muntaner Vives A. Artificial intelligence in surgery: a systematic review of use and validation. J Clin Med. 2024;13:7108.
25. Oei SP, Bakkes THGF, Mischi M, Bouwman RA, van Sloun RJG, Turco S. Artificial intelligence in clinical decision support and the prediction of adverse events. Front Digit Health. 2025;7:1403047.
26. Caballero D, Sánchez-Margallo JA, Pérez-Salazar MJ, Sánchez-Margallo FM. Applications of artificial intelligence in minimally invasive surgery training: a scoping review. Surgeries. 2025;6:7.
27. Arakaki S, Takenaka S, Sasaki K, et al. Artificial intelligence in minimally invasive surgery: current state and future challenges. JMA J. 2025;8:86-90.
28. Venkatesan M, Mohan H, Ryan JR, et al. Virtual and augmented reality for biomedical applications. Cell Rep Med. 2021;2:100348.
29. Riddle EW, Kewalramani D, Narayan M, Jones DB. Surgical simulation: virtual reality to artificial intelligence. Curr Probl Surg. 2024;61:101625.
30. Miles TJ, Ghanta RK. Machine learning in cardiac surgery: a narrative review. J Thorac Dis. 2024;16:2644-53.
31. Gadhachanda KR, Marsool Marsool MD, Bozorgi A, et al. Artificial intelligence in cardiovascular procedures: a bibliometric and visual analysis study. Ann Med Surg. 2025;87:2187-203.
32. Kankanamge D, Wijeweera C, Ong Z, et al. Artificial intelligence based assessment of minimally invasive surgical skills using standardised objective metrics - a narrative review. Am J Surg. 2025;241:116074.
33. Bellini V, Valente M, Bertorelli G, et al. Machine learning in perioperative medicine: a systematic review. J Anesth Analg Crit Care. 2022;2:2.
34. Leivaditis V, Beltsios E, Papatriantafyllou A, et al. Artificial intelligence in cardiac surgery: transforming outcomes and shaping the future. Clin Pract. 2025;15:17.
35. Theriault-Lauzier P, Suc G, Sengupta PP, et al. Artificial intelligence in valvular heart disease: current evidence and future perspectives. Eur Heart J Valvular Cardiol. 2025;1:xwaf002.
36. Graeßner M, Jungwirth B, Frank E, et al. Enabling personalized perioperative risk prediction by using a machine-learning model based on preoperative data. Sci Rep. 2023;13:7128.
37. Nashef SAM, Ali J. Artificial intelligence and cardiac surgery risk assessment. Eur J Cardiothorac Surg. 2023;63:ezad226.
38. Abdel Malek M, van Velzen M, Dahan A, et al. Generation of preoperative anaesthetic plans by ChatGPT-4.0: a mixed-method study. Br J Anaesth. 2025;134:1333-40.
39. Henckert D, Malorgio A, Schweiger G, et al. Attitudes of anesthesiologists toward artificial intelligence in anesthesia: a multicenter, mixed qualitative-quantitative study. J Clin Med. 2023;12:2096.
40. Brandenburg JM, Müller-Stich BP, Wagner M, van der Schaar M. Can surgeons trust AI? Perspectives on machine learning in surgery and the importance of eXplainable artificial intelligence (XAI). Langenbecks Arch Surg. 2025;410:53.
41. King A, Fowler GE, Macefield RC, et al. Use of artificial intelligence in the analysis of digital videos of invasive surgical procedures: scoping review. BJS Open. 2025;9:zraf073.
42. Pedrett R, Mascagni P, Beldi G, Padoy N, Lavanchy JL. Technical skill assessment in minimally invasive surgery using artificial intelligence: a systematic review. Surg Endosc. 2023;37:7412-24.
43. Guo C, He Y, Shi Z, Wang L. Artificial intelligence in surgical medicine: a brief review. Ann Med Surg. 2025;87:2180-6.
44. Arjomandi Rad A, Vardanyan R, Athanasiou T, Maessen J, Sardari Nia P. The ethical considerations of integrating artificial intelligence into surgery: a review. Interdiscip Cardiovasc Thorac Surg. 2025;40:ivae192.
45. Cross JL, Choma MA, Onofrey JA. Bias in medical AI: implications for clinical decision-making. PLOS Digit Health. 2024;3:e0000651.
46. Khanna NN, Maindarkar MA, Viswanathan V, et al. Economics of artificial intelligence in healthcare: diagnosis vs. treatment. Healthcare. 2022;10:2493.
47. De Simone B, Deeken G, Catena F. Balancing ethics and innovation: can artificial intelligence safely transform emergency surgery? A narrative perspective. J Clin Med. 2025;14:3111.
48. Fangerau H. Artifical intelligence in surgery: ethical considerations in the light of social trends in the perception of health and medicine. EFORT Open Rev. 2024;9:323-8.





