REFERENCES

1. Ljungberg B, Albiges L, Abu-Ghanem Y, et al. European Association of Urology Guidelines on renal cell carcinoma: the 2022 update. Eur Urol 2022;82:399-410.

2. Benway BM, Bhayani SB, Rogers CG, et al. Robot assisted partial nephrectomy versus laparoscopic partial nephrectomy for renal tumors: a multi-institutional analysis of perioperative outcomes. J Urol 2009;182:866-72.

3. Kim DK, Kim LH, Raheem AA, et al. Comparison of trifecta and pentafecta outcomes between T1a and T1b renal masses following robot-assisted partial nephrectomy (RAPN) with minimum one year follow up: can RAPN for T1b renal masses be feasible? PLoS One 2016;11:e0151738.

4. Marszalek M, Carini M, Chlosta P, et al. Positive surgical margins after nephron-sparing surgery. Eur Urol 2012;61:757-63.

5. Kaczmarek BF, Sukumar S, Petros F, et al. Robotic ultrasound probe for tumor identification in robotic partial nephrectomy: initial series and outcomes. Int J Urol 2013;20:172-6.

6. Zhang Y, Ouyang W, Wu B, et al. Robot-assisted partial nephrectomy with a standard laparoscopic ultrasound probe in treating endophytic renal tumor. Asian J Surg 2020;43:423-7.

7. Puliatti S, Eissa A, Checcucci E, et al. New imaging technologies for robotic kidney cancer surgery. Asian J Urol 2022;9:253-62.

8. Di Cosmo G, Verzotti E, Silvestri T, et al. Intraoperative ultrasound in robot-assisted partial nephrectomy: state of the art. Arch Ital Urol Androl 2018;90:195-8.

9. Correas JM, Anglicheau D, Joly D, Gennisson JL, Tanter M, Hélénon O. Ultrasound-based imaging methods of the kidney-recent developments. Kidney Int 2016;90:1199-210.

10. Hyams ES, Perlmutter M, Stifelman MD. A prospective evaluation of the utility of laparoscopic Doppler technology during minimally invasive partial nephrectomy. Urology 2011;77:617-20.

11. Greis C. Technology overview: SonoVue (Bracco, Milan). Eur Radiol 2004;14:11-15.

12. Rosiello G, Piazza P, Puliatti S, et al. Simplified PADUA renal (SPARE) nephrometry score validation and long-term outcomes after robot-assisted partial nephrectomy. Urol Oncol 2022;40:65.e1-9.

13. Hsu TH, Jeffrey RB Jr, Chon C, Presti JC Jr. Laparoscopic radical nephrectomy incorporating intraoperative ultrasonography for renal cell carcinoma with renal vein tumor thrombus. Urology 2003;61:1246-8.

14. Campbell SC, Fichtner J, Novick AC, et al. Intraoperative evaluation of renal cell carcinoma: a prospective study of the role of ultrasonography and histopathological frozen sections. J Urol 1996;155:1191-5.

15. Polascik TJ, Meng MV, Epstein JI, Marshall FF. Intraoperative sonography for the evaluation and management of renal tumors: experience with 100 patients. J Urol 1995;154:1676-80.

16. Alenezi AN, Karim O. Role of intra-operative contrast-enhanced ultrasound (CEUS) in robotic-assisted nephron-sparing surgery. J Robot Surg 2015;9:1-10.

17. Keereweer S, Van Driel PBAA, Snoeks TJA, et al. Optical image-guided cancer surgery: challenges and limitations. Clin Cancer Res 2013;19:3745-54.

18. Gadus L, Kocarek J, Chmelik F, Matejkova M, Heracek J. Robotic partial nephrectomy with indocyanine green fluorescence navigation. Contrast Media Mol Imaging 2020;2020:1287530.

19. Bjurlin MA, McClintock TR, Stifelman MD. Near-infrared fluorescence imaging with intraoperative administration of indocyanine green for robotic partial nephrectomy. Curr Urol Rep 2015;16:20.

20. Diana P, Buffi NM, Lughezzani G, et al. The role of intraoperative indocyanine green in robot-assisted partial nephrectomy: results from a large, multi-institutional series. Eur Urol 2020;78:743-9.

21. McClintock TR, Bjurlin MA, Wysock JS, et al. Can selective arterial clamping with fluorescence imaging preserve kidney function during robotic partial nephrectomy? Urology 2014;84:327-32.

22. Mattevi D, Luciani LG, Mantovani W, et al. Fluorescence-guided selective arterial clamping during RAPN provides better early functional outcomes based on renal scan compared to standard clamping. J Robot Surg 2019;13:391-6.

23. Abdel Raheem A, Alowidah I, Capitanio U, et al. Warm ischemia time length during on-clamp partial nephrectomy: does it really matter? Minerva Urol Nephrol 2022;74:194-202.

24. Simone G, Ferriero M, Papalia R, Costantini M, Guaglianone S, Gallucci M. Zero-ischemia minimally invasive partial nephrectomy. Curr Urol Rep 2013;14:465-70.

25. Sentell KT, Ferroni MC, Abaza R. Near-infrared fluorescence imaging for intraoperative margin assessment during robot-assisted partial nephrectomy. BJU Int 2020;126:259-64.

26. Simone G, Tuderti G, Anceschi U, et al. “Ride the green light”: indocyanine green-marked off-clamp robotic partial nephrectomy for totally endophytic renal masses. Eur Urol 2019;75:1008-14.

27. Autorino R, Khalifeh A, Laydner H, et al. Robot-assisted partial nephrectomy (RAPN) for completely endophytic renal masses: a single institution experience. BJU Int 2014;113:762-8.

28. Tuderti G, Brassetti A, Mastroianni R, et al. Expanding the limits of nephron-sparing surgery: surgical technique and mid-term outcomes of purely off-clamp robotic partial nephrectomy for totally endophytic renal tumors. Int J Urol 2022;29:282-8.

29. Sulek JE, Steward JE, Bahler CD, et al. Folate-targeted intraoperative fluorescence, OTL38, in robotic-assisted laparoscopic partial nephrectomy. Scand J Urol 2021;55:331-6.

30. Povoski SP, Hall NC, Murrey DA Jr, et al. Multimodal imaging and detection strategy with 124 I-labeled chimeric monoclonal antibody cG250 for accurate localization and confirmation of extent of disease during laparoscopic and open surgical resection of clear cell renal cell carcinoma. Surg Innov 2013;20:59-69.

31. Hekman MC, Boerman OC, de Weijert M, et al. Targeted dual-modality imaging in renal cell carcinoma: an ex vivo kidney perfusion study. Clin Cancer Res 2016;22:4634-42.

32. Phung MC, Rouse AR, Pangilinan J, et al. Investigation of confocal microscopy for differentiation of renal cell carcinoma versus benign tissue. Can an optical biopsy be performed? Asian J Urol 2020;7:363-8.

33. Su LM, Kuo J, Allan RW, et al. Fiber-optic confocal laser endomicroscopy of small renal masses: toward real-time optical diagnostic biopsy. J Urol 2016;195:486-92.

34. Gordetsky J, Gorin MA, Canner J, et al. Frozen section during partial nephrectomy: does it predict positive margins? BJU Int 2015;116:868-72.

35. Puliatti S, Bertoni L, Pirola GM, et al. Ex vivo fluorescence confocal microscopy: the first application for real-time pathological examination of prostatic tissue. BJU Int 2019;124:469-76.

36. Mir MC, Bancalari B, Calatrava A, et al. Ex-vivo confocal fluorescence microscopy for rapid evaluation of renal core biopsy. Minerva Urol Nefrol 2020;72:109-13.

37. Prata F, Anceschi U, Taffon C, et al. Real-time urethral and ureteral assessment during radical cystectomy using ex-vivo optical imaging: a novel technique for the evaluation of fresh unfixed surgical margins. Curr Oncol 2023;30:3421-31.

38. Linehan JA, Bracamonte ER, Hariri LP, et al. Feasibility of optical coherence tomography imaging to characterize renal neoplasms: limitations in resolution and depth of penetration. BJU Int 2011;108:1820-4.

39. Hekman MCH, Rijpkema M, Langenhuijsen JF, Boerman OC, Oosterwijk E, Mulders PFA. Intraoperative imaging techniques to support complete tumor resection in partial nephrectomy. Eur Urol Focus 2018;4:960-8.

40. Esperto F, Prata F, Autrán-Gómez AM, et al. New technologies for kidney surgery planning 3D, impression, augmented reality 3D, reconstruction: current realities and expectations. Curr Urol Rep 2021;22:35.

41. Sun Z. Insights into 3D printing in medical applications. Quant Imaging Med Surg 2019;9:1-5.

42. Papalia R, Panebianco V, Mastroianni R, et al. Accuracy of magnetic resonance imaging to identify pseudocapsule invasion in renal tumors. World J Urol 2020;38:407-15.

43. Kim JH, Sun HY, Hwang J, et al. Diagnostic accuracy of contrast-enhanced computed tomography and contrast-enhanced magnetic resonance imaging of small renal masses in real practice: sensitivity and specificity according to subjective radiologic interpretation. World J Surg Oncol 2016;14:260.

44. Moldovanu CG, Lebovici A, Buruian MM. A systematic review of the clinical value and applications of three-dimensional virtual reconstructions in renal tumors. Med Pharm Rep 2022;95:11-23.

45. Bertolo R, Autorino R, Fiori C, et al. Expanding the indications of robotic partial nephrectomy for highly complex renal tumors: urologists’ perception of the impact of hyperaccuracy three-dimensional reconstruction. J Laparoendosc Adv Surg Tech A 2019;29:233-9.

46. Porpiglia F, Amparore D, Checcucci E, et al. Three-dimensional virtual imaging of renal tumours: a new tool to improve the accuracy of nephrometry scores. BJU Int 2019;124:945-54.

47. Tuderti G, Mastroianni R, Anceschi U, et al. Assessing the trade-off between the safety and effectiveness of off-clamp robotic partial nephrectomy for renal masses with a high RENAL score: a propensity score-matched comparison of perioperative and functional outcomes in a multicenter analysis. Eur Urol Focus 2023;9:1037-43.

48. Liu J, Liu J, Wang S, et al. Three-dimensional nephrometry scoring system: a precise scoring system to evaluate complexity of renal tumors suitable for partial nephrectomy. PeerJ 2020;8:e8637.

49. Yoshitomi KK, Komai Y, Yamamoto T, et al. Improving accuracy, reliability, and efficiency of the RENAL nephrometry score with 3D reconstructed virtual imaging. Urology 2022;164:286-92.

50. Huang Q, Gu L, Zhu J, et al. A three-dimensional, anatomy-based nephrometry score to guide nephron-sparing surgery for renal sinus tumors. Cancer 2020;126:2062-72.

51. Mitsui Y, Sadahira T, Araki M, et al. The 3-D volumetric measurement including resected specimen for predicting renal function afterrobot-assisted partial nephrectomy. Urology 2019;125:104-10.

52. Meyer A, Woldu SL, Weinberg AC, et al. Predicting renal parenchymal loss after nephron sparing surgery. J Urol 2015;194:658-63.

53. Porpiglia F, Amparore D, Checcucci E, et al. for ESUT Research Group. Current use of three-dimensional model technology in urology: a road map for personalised surgical planning. Eur Urol Focus 2018;4:652-6.

54. Tang SL, Kwoh CK, Teo MY, Sing NW, Ling KV. Augmented reality systems for medical applications. IEEE Eng Med Biol Mag 1998;17:49-58.

55. Checcucci E, Amparore D, Fiori C, et al. 3D imaging applications for robotic urologic surgery: an ESUT YAUWP review. World J Urol 2020;38:869-81.

56. Hughes-Hallett A, Mayer EK, Marcus HJ, et al. Augmented reality partial nephrectomy: examining the current status and future perspectives. Urology 2014;83:266-73.

57. Altamar HO, Ong RE, Glisson CL, et al. Kidney deformation and intraprocedural registration: a study of elements of image-guided kidney surgery. J Endourol 2011;25:511-7.

58. Hughes-Hallett A, Pratt P, Mayer E, et al. Intraoperative ultrasound overlay in robot-assisted partial nephrectomy: first clinical experience. Eur Urol 2014;65:671-2.

59. Kowalewski KF, Egen L, Fischetti CE, et al; Young Academic Urologists (YAU)-Urotechnology-Group. Artificial intelligence for renal cancer: from imaging to histology and beyond. Asian J Urol 2022;9:243-52.

60. Hameed BMZ, S Dhavileswarapu AVL, Raza SZ, et al. Artificial intelligence and its impact on urological diseases and management: a comprehensive review of the literature. J Clin Med 2021;10:1864.

61. Feng Z, Rong P, Cao P, et al. Machine learning-based quantitative texture analysis of CT images of small renal masses: differentiation of angiomyolipoma without visible fat from renal cell carcinoma. Eur Radiol 2018;28:1625-33.

62. Shah M, Naik N, Somani BK, Hameed BMZ. Artificial intelligence (AI) in urology-current use and future directions: an iTRUE study. Turk J Urol 2020;46:S27-39.

63. Kocak B, Yardimci AH, Bektas CT, et al. Textural differences between renal cell carcinoma subtypes: machine learning-based quantitative computed tomography texture analysis with independent external validation. Eur J Radiol 2018;107:149-57.

64. Ding J, Xing Z, Jiang Z, et al. CT-based radiomic model predicts high grade of clear cell renal cell carcinoma. Eur J Radiol 2018;103:51-6.

65. Li P, Ren H, Zhang Y, Zhou Z. Fifteen-gene expression based model predicts the survival of clear cell renal cell carcinoma. Medicine 2018;97:e11839.

66. Kocak B, Durmaz ES, Ates E, Ulusan MB. Radiogenomics in clear cell renal cell carcinoma: machine learning-based high-dimensional quantitative CT texture analysis in predicting PBRM1 mutation status. AJR Am J Roentgenol 2019;212:W55-63.

67. Nakawala H, Bianchi R, Pescatori LE, De Cobelli O, Ferrigno G, De Momi E. “Deep-Onto” network for surgical workflow and context recognition. Int J Comput Assist Radiol Surg 2019;14:685-96.

68. Amir-Khalili A, Hamarneh G, Peyrat JM, et al. Automatic segmentation of occluded vasculature via pulsatile motion analysis in endoscopic robot-assisted partial nephrectomy video. Med Image Anal 2015;25:103-10.

69. Amparore D, Piramide F, De Cillis S, et al; Renal Cancer Working Group of the Young Academic Urologists (YAU) and European Association of Urology (EAU). Robotic partial nephrectomy in 3D virtual reconstructions era: is the paradigm changed? World J Urol 2022;40:659-70.

70. Veneziano D, Amparore D, Cacciamani G, Porpiglia F; Uro-technology; SoMe Working Group of the Young Academic Urologists Working Party of the European Association of Urology; European Section of Uro-technology. Climbing over the barriers of current imaging technology in urology. Eur Urol 2020;77:142-3.

71. Checcucci E, Cacciamani GE, Amparore D, et al. The metaverse in urology: ready for prime time. The ESUT, ERUS, EULIS, and ESU perspective. Eur Urol Open Sci 2022;46:96-8.

Mini-invasive Surgery
ISSN 2574-1225 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/