1. Trivedi NS, Kharkar RA, Mandavgane SA. Utilization of cotton plant ash and char for removal of 2, 4-dichlorophenoxyacetic acid. Resour-Effic Technol 2016;2:S39-46.
2. Li L, Zou D, Xiao Z, et al. Biochar as a sorbent for emerging contaminants enables improvements in waste management and sustainable resource use. J Clean Prod 2019;210:1324-42.
3. Baloochi SJ, Solaimany Nazar AR, Farhadian M. 2,4-Dichlorophenoxyacetic acid herbicide photocatalytic degradation by zero-valent iron/titanium dioxide based on activated carbon. Environ Nanotechnol Monit Manage 2018;10:212-22.
4. Bahrami M, Amiri MJ, Beigzadeh B. Adsorption of 2,4-dichlorophenoxyacetic acid using rice husk biochar, granular activated carbon, and multi-walled carbon nanotubes in a fixed bed column system. Water Sci Technol 2018;78:1812-21.
5. Coelho ERC, Brito GM, Frasson Loureiro L, Schettino MA Jr, Freitas JCC. 2,4-dichlorophenoxyacetic acid (2,4-D) micropollutant herbicide removing from water using granular and powdered activated carbons: a comparison applied for water treatment and health safety. J Environ Sci Health B 2020;55:361-75.
6. Chen M, Zheng J, Dai R, Wu Z, Wang Z. Preferential removal of 2,4-dichlorophenoxyacetic acid from contaminated waters using an electrocatalytic ceramic membrane filtration system: mechanisms and implications. Chem Eng J 2020;387:124132.
7. Xu X, Cai J, Zhou M, Du X, Zhang Y. Photoelectrochemical degradation of 2,4-dichlorophenoxyacetic acid using electrochemically self-doped Blue TiO2 nanotube arrays with formic acid as electrolyte. J Hazard Mater 2020;382:121096.
8. Alikhani N, Farhadian M, Goshadrou A, Tangestaninejad S, Eskandari P. Photocatalytic degradation and adsorption of herbicide 2,4-dichlorophenoxyacetic acid from aqueous solution using TiO2/BiOBr/Bi2S3 nanostructure stabilized on the activated carbon under visible light. Environ Nanotechnol Monit Manage 2021;15:100415.
10. Wu H, Gong L, Zhang X, He F, Li Z. Bifunctional porous polyethyleneimine-grafted lignin microspheres for efficient adsorption of 2,4-dichlorophenoxyacetic acid over a wide pH range and controlled release. Chem Eng J 2021;411:128539.
12. Sarmah AK, Müller K, Ahmad R. Fate and behaviour of pesticides in the agroecosystem - a review with a New Zealand perspective. Aust J Soil Res 2004;42:125-54.
13. Kanissery R, Gairhe B, Mcavoy C, Sims G. Herbicide bioavailability determinant processes in the soil. J Bioremediat Biodegrad 2019;10:458.
14. Sarmah AK, Srinivasan P, Smernik RJ, et al. Retention capacity of biochar-amended New Zealand dairy farm soil for an estrogenic steroid hormone and its primary metabolite. Aust J Soil Res 2010;48:648-58.
15. Luo Z, Yao B, Yang X, et al. Novel insights into the adsorption of organic contaminants by biochar: A review. Chemosphere 2022;287:132113.
16. Qiu B, Tao X, Wang H, Li W, Ding X, Chu H. Biochar as a low-cost adsorbent for aqueous heavy metal removal: a review. J Anal Appl Pyrol 2021;155:105081.
17. Zhou Y, Qin S, Verma S, et al. Production and beneficial impact of biochar for environmental application: a comprehensive review. Bioresour Technol 2021;337:125451.
18. Sun K, Keiluweit M, Kleber M, Pan Z, Xing B. Sorption of fluorinated herbicides to plant biomass-derived biochars as a function of molecular structure. Bioresour Technol 2011;102:9897-903.
19. Srinivasan P, Sarmah AK, Smernik R, Das O, Farid M, Gao W. A feasibility study of agricultural and sewage biomass as biochar, bioenergy and biocomposite feedstock: production, characterization and potential applications. Sci Total Environ 2015;512-3:495-505.
20. An X, Wu Z, Shi W, et al. Biochar for simultaneously enhancing the slow-release performance of fertilizers and minimizing the pollution of pesticides. J Hazard Mater 2021;407:124865.
21. Suo F, You X, Ma Y, Li Y. Rapid removal of triazine pesticides by P doped biochar and the adsorption mechanism. Chemosphere 2019;235:918-25.
22. Kearns JP, Shimabuku KK, Knappe DR, Summers RS. High temperature co-pyrolysis thermal air activation enhances biochar adsorption of herbicides from surface water. Environ Eng Sci 2019;36:710-23.
23. Khorram MS, Sarmah AK, Yu Y. The Effects of biochar properties on fomesafen adsorption-desorption capacity of biochar-amended soil. Water Air Soil Pollut 2018;229:60.
24. Kookana RS, Sarmah AK, Van Zwieten L, Krull E, Singh B. Biochar application to soil: agronomic and environmental benefits and unintended consequences. Adv Agron 2011;112:103-43.
25. Jin J, Kang M, Sun K, Pan Z, Wu F, Xing B. Properties of biochar-amended soils and their sorption of imidacloprid, isoproturon, and atrazine. Sci Total Environ 2016;550:504-13.
26. Chen B, Yuan M. Enhanced sorption of polycyclic aromatic hydrocarbons by soil amended with biochar. J Soils Sediments 2011;11:62-71.
27. Kırbıyık Ç, Pütün AE, Pütün E. Equilibrium, kinetic, and thermodynamic studies of the adsorption of Fe(III) metal ions and 2,4-dichlorophenoxyacetic acid onto biomass-based activated carbon by ZnCl 2 activation. Surf Interfaces 2017;8:182-92.
28. Kazak O, Eker YR, Akin I, Bingol H, Tor A. Green preparation of a novel red mud@carbon composite and its application for adsorption of 2,4-dichlorophenoxyacetic acid from aqueous solution. Environ Sci Pollut Res 2017;24:23057-68.
29. Xing B, Pignatello J. Sorption | Organic Chemicals. In:Encyclopedia of Soils in the Environment. Elsevier; 2005. p. 537-48.
31. Li Q, Sun J, Ren T, et al. Adsorption mechanism of 2,4-dichlorophenoxyacetic acid onto nitric-acid-modified activated carbon fiber. Environ Technol 2018;39:895-906.
32. Haeldermans T, Claesen J, Maggen J, et al. Microwave assisted and conventional pyrolysis of MDF-characterization of the produced biochars. J Anal Appl Pyrol 2019;138:218-30.
33. Mcbeath AV, Smernik RJ, Krull ES, Lehmann J. The influence of feedstock and production temperature on biochar carbon chemistry: a solid-state 13C NMR study. Biomass Bioenerg 2014;60:121-9.
34. Meftaul IM, Venkateswarlu K, Dharmarajan R, Annamalai P, Megharaj M. Movement and fate of 2,4-D in urban soils: a potential environmental health concern. ACS Omega 2020;5:13287-95.
35. Zhu L, Zhao N, Tong L, Lv Y, Li G. Characterization and evaluation of surface modified materials based on porous biochar and its adsorption properties for 2,4-dichlorophenoxyacetic acid. Chemosphere 2018;210:734-44.
36. Essandoh M, Wolgemuth D, Pittman CU Jr, Mohan D, Mlsna T. Phenoxy herbicide removal from aqueous solutions using fast pyrolysis switchgrass biochar. Chemosphere 2017;174:49-57.
37. Doczekalska B, Kuśmierek K, Świątkowski A, Bartkowiak M. Adsorption of 2,4-dichlorophenoxyacetic acid and 4-chloro-2-metylphenoxyacetic acid onto activated carbons derived from various lignocellulosic materials. J Environ Sci Health B 2018;53:290-7.
38. Binh QA, Nguyen HH. Investigation the isotherm and kinetics of adsorption mechanism of herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) on corn cob biochar. Bioresour Technol Rep 2020;11:100520.
39. Salomón YLDO, Georgin J, Franco DS, et al. High-performance removal of 2,4-dichlorophenoxyacetic acid herbicide in water using activated carbon derived from Queen palm fruit endocarp (Syagrus romanzoffiana). J Environ Chem Eng 2021;9:104911.
40. Fernandez ME, Morel MDR, Clebot AC, Zalazar CS, Ballari MDLM. Effectiveness of a simple biomixture for the adsorption and elimination of 2,4-dichlorophenoxyacetic acid (2,4-D) herbicide and its metabolite, 2,4-dichlorophenol (2,4-DCP), for a biobed system. J Environ Chem Eng 2022;10:106877.
41. Cotillas S, Sáez C, Cañizares P, Cretescu I, Rodrigo MA. Removal of 2,4-D herbicide in soils using a combined process based on washing and adsorption electrochemically assisted. Sep Purif Technol 2018;194:19-25.
42. Buerge IJ, Pavlova P, Hanke I, Bächli A, Poiger T. Degradation and sorption of the herbicides 2,4-D and quizalofop-P-ethyl and their metabolites in soils from railway tracks. Environ Sci Eur 2020;32:150.
43. Ololade IA, Alomaja F, Oladoja NA, Ololade OO, Oloye FF. Kinetics and isotherm analysis of 2,4-dichlorophenoxyl acetic acid adsorption onto soil components under oxic and anoxic conditions. J Environ Sci Health B 2015;50:492-503.
44. Ozbay B, Akyol NH, Akyol G, Ozbay I. Sorption and desorption behaviours of 2,4-D and glyphosate in calcareous soil from Antalya, Turkey. Water Environ J 2018;32:141-8.
45. Mon EE, Hirata T, Kawamoto K, Hiradate S, Komatsu T, Moldrup P. Adsorption of 2,4-dichlorophenoxyacetic acid onto volcanic ash soils: effects of pH and soil organic matter. Environment Asia 2009;1:1-9. Available from: http://www.tshe.org/ea/pdf/EA2(1)_01.pdf. [Last accessed on 17 Aug 2023]
46. Werner D, Garratt JA, Pigott G. Sorption of 2,4-D and other phenoxy herbicides to soil, organic matter, and minerals. J Soils Sediments 2013;13:129-39.
47. Hiradate S, Furubayashi A, Uchida N, Fujii Y. Adsorption of 2,4-dichlorophenoxyacetic acid by an Andosol. J Environ Qual 2007;36:101-9.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.