REFERENCES

1. Trivedi NS, Kharkar RA, Mandavgane SA. Utilization of cotton plant ash and char for removal of 2, 4-dichlorophenoxyacetic acid. Resour-Effic Technol 2016;2:S39-46.

2. Li L, Zou D, Xiao Z, et al. Biochar as a sorbent for emerging contaminants enables improvements in waste management and sustainable resource use. J Clean Prod 2019;210:1324-42.

3. Baloochi SJ, Solaimany Nazar AR, Farhadian M. 2,4-Dichlorophenoxyacetic acid herbicide photocatalytic degradation by zero-valent iron/titanium dioxide based on activated carbon. Environ Nanotechnol Monit Manage 2018;10:212-22.

4. Bahrami M, Amiri MJ, Beigzadeh B. Adsorption of 2,4-dichlorophenoxyacetic acid using rice husk biochar, granular activated carbon, and multi-walled carbon nanotubes in a fixed bed column system. Water Sci Technol 2018;78:1812-21.

5. Coelho ERC, Brito GM, Frasson Loureiro L, Schettino MA Jr, Freitas JCC. 2,4-dichlorophenoxyacetic acid (2,4-D) micropollutant herbicide removing from water using granular and powdered activated carbons: a comparison applied for water treatment and health safety. J Environ Sci Health B 2020;55:361-75.

6. Chen M, Zheng J, Dai R, Wu Z, Wang Z. Preferential removal of 2,4-dichlorophenoxyacetic acid from contaminated waters using an electrocatalytic ceramic membrane filtration system: mechanisms and implications. Chem Eng J 2020;387:124132.

7. Xu X, Cai J, Zhou M, Du X, Zhang Y. Photoelectrochemical degradation of 2,4-dichlorophenoxyacetic acid using electrochemically self-doped Blue TiO2 nanotube arrays with formic acid as electrolyte. J Hazard Mater 2020;382:121096.

8. Alikhani N, Farhadian M, Goshadrou A, Tangestaninejad S, Eskandari P. Photocatalytic degradation and adsorption of herbicide 2,4-dichlorophenoxyacetic acid from aqueous solution using TiO2/BiOBr/Bi2S3 nanostructure stabilized on the activated carbon under visible light. Environ Nanotechnol Monit Manage 2021;15:100415.

9. Lewis KA, Green A, Tzilivakis J, Warner D. The Pesticide Properties DataBase (PPDB) developed by the Agriculture & Environment Research Unit (AERU), University of Hertfordshire, 2006-2015. Available from: https://www.researchgate.net/publication/302465822_The_Pesticide_Properties_DataBase_PPDB_developed_by_the_Agriculture_Environment_Research_Unit_AERU [Last accessed on 17 Aug 2023].

10. Wu H, Gong L, Zhang X, He F, Li Z. Bifunctional porous polyethyleneimine-grafted lignin microspheres for efficient adsorption of 2,4-dichlorophenoxyacetic acid over a wide pH range and controlled release. Chem Eng J 2021;411:128539.

12. Sarmah AK, Müller K, Ahmad R. Fate and behaviour of pesticides in the agroecosystem - a review with a New Zealand perspective. Aust J Soil Res 2004;42:125-54.

13. Kanissery R, Gairhe B, Mcavoy C, Sims G. Herbicide bioavailability determinant processes in the soil. J Bioremediat Biodegrad 2019;10:458.

14. Sarmah AK, Srinivasan P, Smernik RJ, et al. Retention capacity of biochar-amended New Zealand dairy farm soil for an estrogenic steroid hormone and its primary metabolite. Aust J Soil Res 2010;48:648-58.

15. Luo Z, Yao B, Yang X, et al. Novel insights into the adsorption of organic contaminants by biochar: A review. Chemosphere 2022;287:132113.

16. Qiu B, Tao X, Wang H, Li W, Ding X, Chu H. Biochar as a low-cost adsorbent for aqueous heavy metal removal: a review. J Anal Appl Pyrol 2021;155:105081.

17. Zhou Y, Qin S, Verma S, et al. Production and beneficial impact of biochar for environmental application: a comprehensive review. Bioresour Technol 2021;337:125451.

18. Sun K, Keiluweit M, Kleber M, Pan Z, Xing B. Sorption of fluorinated herbicides to plant biomass-derived biochars as a function of molecular structure. Bioresour Technol 2011;102:9897-903.

19. Srinivasan P, Sarmah AK, Smernik R, Das O, Farid M, Gao W. A feasibility study of agricultural and sewage biomass as biochar, bioenergy and biocomposite feedstock: production, characterization and potential applications. Sci Total Environ 2015;512-3:495-505.

20. An X, Wu Z, Shi W, et al. Biochar for simultaneously enhancing the slow-release performance of fertilizers and minimizing the pollution of pesticides. J Hazard Mater 2021;407:124865.

21. Suo F, You X, Ma Y, Li Y. Rapid removal of triazine pesticides by P doped biochar and the adsorption mechanism. Chemosphere 2019;235:918-25.

22. Kearns JP, Shimabuku KK, Knappe DR, Summers RS. High temperature co-pyrolysis thermal air activation enhances biochar adsorption of herbicides from surface water. Environ Eng Sci 2019;36:710-23.

23. Khorram MS, Sarmah AK, Yu Y. The Effects of biochar properties on fomesafen adsorption-desorption capacity of biochar-amended soil. Water Air Soil Pollut 2018;229:60.

24. Kookana RS, Sarmah AK, Van Zwieten L, Krull E, Singh B. Biochar application to soil: agronomic and environmental benefits and unintended consequences. Adv Agron 2011;112:103-43.

25. Jin J, Kang M, Sun K, Pan Z, Wu F, Xing B. Properties of biochar-amended soils and their sorption of imidacloprid, isoproturon, and atrazine. Sci Total Environ 2016;550:504-13.

26. Chen B, Yuan M. Enhanced sorption of polycyclic aromatic hydrocarbons by soil amended with biochar. J Soils Sediments 2011;11:62-71.

27. Kırbıyık Ç, Pütün AE, Pütün E. Equilibrium, kinetic, and thermodynamic studies of the adsorption of Fe(III) metal ions and 2,4-dichlorophenoxyacetic acid onto biomass-based activated carbon by ZnCl 2 activation. Surf Interfaces 2017;8:182-92.

28. Kazak O, Eker YR, Akin I, Bingol H, Tor A. Green preparation of a novel red mud@carbon composite and its application for adsorption of 2,4-dichlorophenoxyacetic acid from aqueous solution. Environ Sci Pollut Res 2017;24:23057-68.

29. Xing B, Pignatello J. Sorption | Organic Chemicals. In:Encyclopedia of Soils in the Environment. Elsevier; 2005. p. 537-48.

30. Environmental Science. Standardized product definition and product testing guidelines for biochar that is used in soil. 2015.Available from: https://www.semanticscholar.org/paper/Standardized-Product-Definition-and-Product-Testing-Ibi/d7f179afe9080d86b27be014109d4ebbd4b46a1b. [Last accessed on 15 Aug 2023].

31. Li Q, Sun J, Ren T, et al. Adsorption mechanism of 2,4-dichlorophenoxyacetic acid onto nitric-acid-modified activated carbon fiber. Environ Technol 2018;39:895-906.

32. Haeldermans T, Claesen J, Maggen J, et al. Microwave assisted and conventional pyrolysis of MDF-characterization of the produced biochars. J Anal Appl Pyrol 2019;138:218-30.

33. Mcbeath AV, Smernik RJ, Krull ES, Lehmann J. The influence of feedstock and production temperature on biochar carbon chemistry: a solid-state 13C NMR study. Biomass Bioenerg 2014;60:121-9.

34. Meftaul IM, Venkateswarlu K, Dharmarajan R, Annamalai P, Megharaj M. Movement and fate of 2,4-D in urban soils: a potential environmental health concern. ACS Omega 2020;5:13287-95.

35. Zhu L, Zhao N, Tong L, Lv Y, Li G. Characterization and evaluation of surface modified materials based on porous biochar and its adsorption properties for 2,4-dichlorophenoxyacetic acid. Chemosphere 2018;210:734-44.

36. Essandoh M, Wolgemuth D, Pittman CU Jr, Mohan D, Mlsna T. Phenoxy herbicide removal from aqueous solutions using fast pyrolysis switchgrass biochar. Chemosphere 2017;174:49-57.

37. Doczekalska B, Kuśmierek K, Świątkowski A, Bartkowiak M. Adsorption of 2,4-dichlorophenoxyacetic acid and 4-chloro-2-metylphenoxyacetic acid onto activated carbons derived from various lignocellulosic materials. J Environ Sci Health B 2018;53:290-7.

38. Binh QA, Nguyen HH. Investigation the isotherm and kinetics of adsorption mechanism of herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) on corn cob biochar. Bioresour Technol Rep 2020;11:100520.

39. Salomón YLDO, Georgin J, Franco DS, et al. High-performance removal of 2,4-dichlorophenoxyacetic acid herbicide in water using activated carbon derived from Queen palm fruit endocarp (Syagrus romanzoffiana). J Environ Chem Eng 2021;9:104911.

40. Fernandez ME, Morel MDR, Clebot AC, Zalazar CS, Ballari MDLM. Effectiveness of a simple biomixture for the adsorption and elimination of 2,4-dichlorophenoxyacetic acid (2,4-D) herbicide and its metabolite, 2,4-dichlorophenol (2,4-DCP), for a biobed system. J Environ Chem Eng 2022;10:106877.

41. Cotillas S, Sáez C, Cañizares P, Cretescu I, Rodrigo MA. Removal of 2,4-D herbicide in soils using a combined process based on washing and adsorption electrochemically assisted. Sep Purif Technol 2018;194:19-25.

42. Buerge IJ, Pavlova P, Hanke I, Bächli A, Poiger T. Degradation and sorption of the herbicides 2,4-D and quizalofop-P-ethyl and their metabolites in soils from railway tracks. Environ Sci Eur 2020;32:150.

43. Ololade IA, Alomaja F, Oladoja NA, Ololade OO, Oloye FF. Kinetics and isotherm analysis of 2,4-dichlorophenoxyl acetic acid adsorption onto soil components under oxic and anoxic conditions. J Environ Sci Health B 2015;50:492-503.

44. Ozbay B, Akyol NH, Akyol G, Ozbay I. Sorption and desorption behaviours of 2,4-D and glyphosate in calcareous soil from Antalya, Turkey. Water Environ J 2018;32:141-8.

45. Mon EE, Hirata T, Kawamoto K, Hiradate S, Komatsu T, Moldrup P. Adsorption of 2,4-dichlorophenoxyacetic acid onto volcanic ash soils: effects of pH and soil organic matter. Environment Asia 2009;1:1-9. Available from: http://www.tshe.org/ea/pdf/EA2(1)_01.pdf. [Last accessed on 17 Aug 2023]

46. Werner D, Garratt JA, Pigott G. Sorption of 2,4-D and other phenoxy herbicides to soil, organic matter, and minerals. J Soils Sediments 2013;13:129-39.

47. Hiradate S, Furubayashi A, Uchida N, Fujii Y. Adsorption of 2,4-dichlorophenoxyacetic acid by an Andosol. J Environ Qual 2007;36:101-9.

Water Emerging Contaminants & Nanoplastics
ISSN 2831-2597 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/