Original Article | Open Access

A responder-informed gut microbial consortium enhances anti-PD-1 efficacy in a mouse cancer model

Views:  16
Microbiome Res Rep 2026;5:[Accepted].
Author Information
Article Notes
Cite This Article

Abstract

Aim: Immune checkpoint inhibitors (ICIs), particularly anti–programmed cell death protein 1 (PD-1) therapy, have improved cancer treatment outcomes, yet durable benefit is achieved in only a subset of patients. Growing evidence implicates the gut microbiome as a modulator of ICI responsiveness, but defined and experimentally validated microbial strategies remain limited. This study aimed to identify responder-associated gut microbes and to evaluate a defined bacterial consortium for enhancing PD-1 blockade efficacy.

 

Methods: Publicly available shotgun metagenomic datasets from anti-PD-1-treated cancer patients were re-analyzed to compare gut microbiome profiles between responders and non-responders. Bacterial taxa reproducibly enriched in responders were selected based on consistency across analytical criteria and cultivability and assembled into a four-strain consortium (UJ-04). The immune-adjuvant potential of UJ-04, alone or combined with anti-PD-1 therapy, was evaluated in a B16-F10 melanoma mouse model, with tumor growth and immune responses assessed by flow cytometry.

 

Results: Metagenomic re-analysis identified four commensal bacterial taxa consistently enriched in responder patients, forming the defined UJ-04 consortium. While UJ-04 alone showed minimal antitumor activity, combination treatment with anti–PD-1 significantly enhanced tumor growth inhibition compared with anti-PD-1 monotherapy. This effect was accompanied by increased intratumoral CD8+ T cells and natural killer cells, with concordant immune trends in peripheral compartments.

 

Conclusion: A responder-informed, defined microbial consortium functionally translates clinical microbiome associations into in vivo validation and enhances PD-1 blockade efficacy by modulating host antitumor immunity. These findings support defined bacterial consortia as microbiome-based immunomodulatory adjuncts for immunotherapy.

Keywords

Gut microbiota, cancer immunotherapy, immune checkpoint inhibitors, anti-PD-1, tumor microenvironment, host-microbiome interactions

Cite This Article

Jeong UJ, Ali M, Park YJ, You JS, Yoon SS. A responder-informed gut microbial consortium enhances anti-PD-1 efficacy in a mouse cancer model. Microbiome Res Rep 2026;5:[Accept]. http://dx.doi.org/10.20517/mrr.2025.117

Copyright

...
© The Author(s) 2026. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Cite This Article 2 clicks
Share This Article
Scan the QR code for reading!
See Updates
Hot Topics
bifidobacteria | gut microbiota | microbiome | probiotics | bacteriophage | phages | antibiotics | microbial | infant gut | microbial ecology | intestinal microbiome | host-microbe interactions | intestinal fungi | microbial ecosystems | metagenomics | microbial DNA sequencing | bifidobacterium | genomic | irritable bowel syndrome |
Microbiome Research Reports
ISSN 2771-5965 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/