Research Article | Open Access

Microstructure-informed analytical modeling of composite cathode for solid-state batteries

Views:  14
Microstructures 2025;5:[Accepted].
Author Information
Article Notes
Cite This Article

Abstract

All-solid-state batteries (ASSBs) promise high energy density and enhanced safety for electrochemical energy storage. The performance of dense composite cathodes relies on optimizing the phase fractions of cathode active material (CAM) and solid electrolyte (SE) to ensure effective electronic and ionic conduction, as well as sufficient interfacial contact. However, unavoidable porosity introduced during synthesis can compromise mass transport and interfacial kinetics, making it critical to predict optimal phase fractions in the presence of pores. Here, we present a computational framework for constructing an analytical surrogate model that captures complex microstructural effects, informed by numerical simulations of effective transport properties using over 250 virtual 3D microstructures. We systematically explore the influence of phase fractions and porosity on effective diffusivity and CAM-SE interfacial area. We report trends due to the differences in the diffusivities of widely studied CAM and SE materials. Our results indicate a tradeoff between achieving high effective ion diffusivity and maximizing specific interfacial area. The percolation threshold for lithium transport in the solid phase depends on the ratio of the diffusivity of the CAM phase to that of the SE phase. These simulation results are accurately described by analytical expressions derived from a nested generalized effective medium theory, offering a robust and practical predictive tool for optimizing composite cathode design in ASSBs.

Keywords

Microstructure, solid-state batteries, solid-electrolyte, composite cathode, computational modeling, effective property

Cite This Article

Wang B, Garcia OK, Wood M, Ye J, Wood BC, Heo TW, Adelstein N. Microstructure-informed analytical modeling of composite cathode for solid-state batteries. Microstructures 2025;5:[Accept]. http://dx.doi.org/10.20517/microstructures.2025.76

Copyright

...
© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Cite This Article 0 clicks
Share This Article
Scan the QR code for reading!
See Updates
Hot Topics
properties |
Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/