1. Chen, T. K.; Shun, T. T.; Yeh, J. W.; Wong, M. S. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surf. Coat. Technol. 2004, 188-9, 193-200.
2. Chen, M. R.; Lin, S. J.; Yeh, J. W.; Chuang, M. H.; Chen, S. K.; Huang, Y. S. Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al0.5CoCrCuFeNi high-entropy alloy. Metall. Mater. Trans. A. 2006, 37, 1363-9.
3. Tung, C. C.; Yeh, J. W.; Shun, T. T.; Chen, S. K.; Huang, Y. S.; Chen, H. C. On the elemental effect of AlCoCrCuFeNi high-entropy alloy system. Mater. Lett. 2007, 61, 1-5.
4. Senkov, O. N.; Wilks, G. B.; Miracle, D. B.; Chuang, C. P.; Liaw, P. K. Refractory high-entropy alloys. Intermetallics 2010, 18, 1758-65.
5. Liu, C. M.; Wang, H. M.; Zhang, S. Q.; Tang, H. B.; Zhang, A. L. Microstructure and oxidation behavior of new refractory high entropy alloys. J. Alloys. Compd. 2014, 583, 162-9.
6. George, E. P.; Raabe, D.; Ritchie, R. O. High-entropy alloys. Nat. Rev. Mater. 2019, 4, 515-34.
7. Li, Z.; Zhao, S.; Ritchie, R. O.; Meyers, M. A. Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys. Prog. Mater. Sci. 2019, 102, 296-345.
8. George, E. P.; Curtin, W. A.; Tasan, C. C. High entropy alloys: a focused review of mechanical properties and deformation mechanisms. Acta. Mater. 2020, 188, 435-74.
9. Otto, F.; Dlouhý, A.; Somsen, C.; Bei, H.; Eggeler, G.; George, E. P. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta. Mater. 2013, 61, 5743-55.
10. He, J. Y.; Zhu, C.; Zhou, D. Q.; Liu, W. H.; Nieh, T. G.; Lu, Z. P. Steady state flow of the FeCoNiCrMn high entropy alloy at elevated temperatures. Intermetallics 2014, 55, 9-14.
11. Li, Y. X.; Nutor, R. K.; Zhao, Q. K.; et al. Unraveling the deformation behavior of the Fe45Co25Ni10V20 high entropy alloy. Int. J. Plast. 2023, 165, 103619.
12. Zhang, Q.; Huang, R.; Jiang, J.; et al. Size effects and plastic deformation mechanisms in single-crystalline CoCrFeNi micro/nanopillars. J. Mech. Phys. Solids. 2022, 162, 104853.
13. Li, C.; Li, J. C.; Zhao, M.; Jiang, Q. Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys. J. Alloys. Compd. 2009, 475, 752-7.
14. Ye, Y. F.; Liu, C. T.; Yang, Y. A geometric model for intrinsic residual strain and phase stability in high entropy alloys. Acta. Mater. 2015, 94, 152-61.
15. Couzinié, J. P.; Lilensten, L.; Champion, Y.; Dirras, G.; Perrière, L.; Guillot, I. On the room temperature deformation mechanisms of a TiZrHfNbTa refractory high-entropy alloy. Mater. Sci. Eng. A. 2015, 645, 255-63.
16. Lee, C.; Maresca, F.; Feng, R.; et al. Strength can be controlled by edge dislocations in refractory high-entropy alloys. Nat. Commun. 2021, 12, 5474.
17. Huang, X.; Liu, L.; Liao, W.; Huang, J.; Sun, H.; Yu, C. Characterization of nucleation behavior in temperature-induced BCC-to-HCP phase transformation for high entropy alloy. Acta. Metall. Sin. 2021, 34, 1546-56.
18. Wu, Y. D.; Cai, Y. H.; Wang, T.; et al. A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties. Mater. Lett. 2014, 130, 277-80.
19. Senkov, O. N.; Scott, J. M.; Senkova, S. V.; Miracle, D. B.; Woodward, C. F. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J. Alloys. Compd. 2011, 509, 6043-8.
20. Mills, L. H.; Emigh, M. G.; Frey, C. H.; et al. Temperature-dependent tensile behavior of the HfNbTaTiZr multi-principal element alloy. Acta. Mater. 2023, 245, 118618.
21. Jeon, S.; Heo, T.; Hwang, S. Y.; et al. Reversible disorder-order transitions in atomic crystal nucleation. Science 2021, 371, 498-503.
22. Fang, Q.; Chen, Y.; Li, J.; et al. Probing the phase transformation and dislocation evolution in dual-phase high-entropy alloys. Int. J. Plast. 2019, 114, 161-73.
23. Jafary-zadeh, M.; Aitken, Z. H.; Tavakoli, R.; Zhang, Y. On the controllability of phase formation in rapid solidification of high entropy alloys. J. Alloys. Compd. 2018, 748, 679-86.
24. Santodonato, L. J.; Liaw, P. K.; Unocic, R. R.; Bei, H.; Morris, J. R. Predictive multiphase evolution in Al-containing high-entropy alloys. Nat. Commun. 2018, 9, 4520.
25. Kostiuchenko, T.; Körmann, F.; Neugebauer, J.; Shapeev, A. Impact of lattice relaxations on phase transitions in a high-entropy alloy studied by machine-learning potentials. NPJ. Comput. Mater. 2019, 5, 195.
26. Li, S.; Ding, X.; Li, J.; Ren, X.; Sun, J.; Ma, E. High-efficiency mechanical energy storage and retrieval using interfaces in nanowires. Nano. Lett. 2010, 10, 1774-9.
27. Wen, Y. H.; Peng, H. B.; Raabe, D.; Gutierrez-Urrutia, I.; Chen, J.; Du, Y. Y. Large recovery strain in Fe-Mn-Si-based shape memory steels obtained by engineering annealing twin boundaries. Nat. Commun. 2014, 5, 4964.
28. Sun, J. W.; Wang, S. L.; Yan, Z. W.; Peng, H. B.; Wen, Y. H. Origin of shape memory effect in Co-Ni alloys undergoing fcchcp martensitic transformation. Mater. Sci. Eng. A. 2015, 639, 456-64.
29. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1-19.
30. Lee, B.; Baskes, M.; Kim, H.; Koo, C. Y. Second nearest-neighbor modified embedded atom method potentials for bcc transition metals. Phys. Rev. B. 2001, 64, 184102.
31. Cowley, J. M. An approximate theory of order in alloys. Phys. Rev. 1950, 77, 669-75.
32. de Fontaine, D. The number of independent pair-correlation functions in multicomponent systems. J. Appl. Cryst. 1971, 4, 15-9.
33. Ceguerra, A. V.; Powles, R. C.; Moody, M. P.; Ringer, S. P. Quantitative description of atomic architecture in solid solutions: a generalized theory for multicomponent short-range order. Phys. Rev. B. 2010, 82, 132201.
34. Cantor, B. Local nanostructure in multicomponent high-entropy materials. High. Entropy. Alloy. Mater. 2024, 2, 277-306.
35. Cowley, J. M. X-ray measurement of order in single crystals of Cu3Au. J. Appl. Phys. 1950, 21, 24-30.
36. Chen, S.; Aitken, Z. H.; Pattamatta, S.; et al. Simultaneously enhancing the ultimate strength and ductility of high-entropy alloys via short-range ordering. Nat. Commun. 2021, 12, 4953.
37. Larsen, P. M. Revisiting the common neighbour analysis and the centrosymmetry parameter. ArXiv 2003, 2020, 08879.
38. Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool. Model. Simul. Mat. Sci. Eng. 2010, 18, 015012.
39. Alippi, P.; Marcus, P. M.; Scheffler, M. Strained tetragonal states and bain paths in metals. Phys. Rev. Lett. 1997, 78, 3892-5.
40. Obasi, G. C.; Birosca, S.; Quinta da Fonseca, J.; Preuss, M. Effect of β grain growth on variant selection and texture memory effect during α→β→α phase transformation in Ti-6 Al-4 V. Acta. Mater. 2012, 60, 1048-58.
41. Yasuda, H. Y.; Yamada, Y.; Cho, K.; Nagase, T. Deformation behavior of HfNbTaTiZr high entropy alloy singe crystals and polycrystals. Mater. Sci. Eng. A. 2021, 809, 140983.
42. Liang, W.; Zhou, M.; Ke, F. Shape memory effect in Cu nanowires. Nano. Lett. 2005, 5, 2039-43.
43. Park, H. S.; Gall, K.; Zimmerman, J. A. Shape memory and pseudoelasticity in metal nanowires. Phys. Rev. Lett. 2005, 95, 255504.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.