Perspective | Open Access

The synergy of geometric tolerance factor and machine learning in discovering stable materials

Views:  13
J Mater Inf 2025;5:[Accepted].
Author Information
Article Notes
Cite This Article

Abstract

Assessing stability remains a fundamental prerequisite for deploying materials across a wide range of applications, including batteries, catalysts, and photovoltaics. However, first-principles stability checks such as phonon dispersion and energy above hull calculations typically require days to weeks of computing time per composition, creating a critical bottleneck for truly high-throughput discovery. In this Perspective, we highlight the underutilized potential of geometric tolerance factors (Tf) as lightweight yet informative indicators for rapid stability assessment. First, we review the Tf developed for representative materials systems, including perovskites, spinels, and garnets, and analyze recent cases where such indicators have been integrated into AI-driven materials discovery. Then, we identify key open challenges in designing Tf that is both accurate and generalizable, as well as in effectively incorporating them into AI frameworks. The potential solutions, including active learning for multi-composition structure, electron density profile-based learning for ionic radii estimation, diffusion model for thermodynamic and kinetic stability, are proposed to address these challenges. The synergy between Tf-based heuristics and advanced AI models has the potential to triage vast compositional spaces before committing to expensive first-principles stability validation, thereby enabling broader innovations in materials design and deployment.

Keywords

Materials informatics, tolerance factor, machine learning, materials discovery, stability assessment

Cite This Article

Wang Z, You F. The synergy of geometric tolerance factor and machine learning in discovering stable materials. J Mater Inf 2025;5:[Accept]. http://dx.doi.org/10.20517/jmi.2025.41

Copyright

...
© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Cite This Article 0 clicks
Share This Article
Scan the QR code for reading!
See Updates
Hot Topics
machine learning |
Journal of Materials Informatics
ISSN 2770-372X (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/