Article | Open Access

Partially graphitic structure-assisted hard carbon derived from lignin for sodium-ion battery anodes

Views:  20
Energy Mater 2025;5:[Accepted].
Author Information
Article Notes
Cite This Article

Abstract

The increasing demand for efficient energy storage has led to increased research on sodium-ion batteries (SIBs) as a promising alternative to lithium-ion batteries. However, the anode materials currently employed in lithium-ion batteries are not suitable for SIBs, highlighting the need for the development of appropriate anode materials. In this study, cellulose- and lignin-rich residues extracted from wood biomass were converted to hard carbon, and their performance as anode materials for SIBs was evaluated. Cellulose and lignin were separated from larch wood using a deep eutectic solvent, followed by carbonization to produce CF-1300C and LF-1300C, respectively. Lignin undergoes partial graphitization at elevated temperatures, enhancing its electrical conductivity and forming ion insertion and extraction pathways. LF-1300C demonstrated higher crystallinity than CF-1300C owing to this graphitization and featured an interlayer spacing of approximately 0.43 nm, which facilitates sodium-ion insertion. Consequently, LF-1300C achieved a higher initial discharge capacity and Coulombic efficiency (350 mAh g⁻¹ and 74%, respectively) than CF-1300C (331 mAh g⁻¹ and 71%, respectively). Furthermore, LF-1300C exhibited a 21% and 84% improvement in rate capability and cycle retention, as compared with CF-1300C. These results indicate that hard carbon with a partially graphitized structure exhibits significant potential for use as an anode material in SIBs, especially in cases where existing crystalline materials present challenges. This study highlights the advantages of lignin-derived hard carbon as a superior anode material for SIBs, providing an eco-friendly and scalable solution for energy storage.

Keywords

Hard carbon, sodium-ion batteries, biomass, cellulose, lignin

Cite This Article

Lim MS, Lim GH, Shin YJ, Chae JS, Lee JW, Roh KC. Partially graphitic structure-assisted hard carbon derived from lignin for sodium-ion battery anodes. Energy Mater 2025;5:[Accept]. http://dx.doi.org/10.20517/energymater.2025.08

Copyright

...
© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Cite This Article 1 clicks
Share This Article
Scan the QR code for reading!
See Updates
Hot Topics
Batteries | Solar cells | Fuel cell | Supercapacitors | Lithium batteries | Lithium-ion batteries | Electrode | Water splitting | Catalysis |
Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/