1. Dey, S. C.; Worfolk, B.; Lower, L.; et al. Phenolic resin derived hard carbon anode for sodium-ion batteries: a review. ACS. Energy. Lett. 2024, 9, 2590-614.
2. Tang, Y.; Zhang, Y.; Li, W.; Ma, B.; Chen, X. Rational material design for ultrafast rechargeable lithium-ion batteries. Chem. Soc. Rev. 2015, 44, 5926-40.
3. Li, X.; Ye, W.; Xu, P.; et al. An encapsulation-based sodium storage via Zn-single-atom implanted carbon nanotubes. Adv. Mater. 2022, 34, 2202898.
4. Hong, W.; Zhang, Y.; Yang, L.; et al. Carbon quantum dot micelles tailored hollow carbon anode for fast potassium and sodium storage. Nano. Energy. 2019, 65, 104038.
5. Zia, A. W.; Rasul, S.; Asim, M.; Samad, Y. A.; Shakoor, R. A.; Masood, T. The potential of plasma-derived hard carbon for sodium-ion batteries. J. Energy. Storage. 2024, 84, 110844.
6. Lu, Z.; Yin, X.; Ji, Y.; et al. Modulating the graphitic domains of hard carbons via tuning resin crosslinking degree to achieve high rate and stable sodium storage. Energy. Mater. 2024, 4, 400038.
7. Wang, R.; Qin, J.; Pei, F.; et al. Ni single atoms on hollow nanosheet assembled carbon flowers optimizing polysulfides conversion for Li-S batteries. Adv. Funct. Mater. 2023, 33, 2305991.
8. Liu, F.; Meng, J.; Jiang, G.; et al. Coordination engineering of metal single atom on carbon for enhanced and robust potassium storage. Matter 2021, 4, 4006-21.
9. Shi, C.; Liu, Y.; Qi, R.; et al. Hierarchical N-doped carbon spheres anchored with cobalt nanocrystals and single atoms for oxygen reduction reaction. Nano. Energy. 2021, 87, 106153.
10. Zhang, S.; Yang, W.; Liang, Y.; Yang, X.; Cao, M.; Cao, R. Template-free synthesis of non-noble metal single-atom electrocatalyst with N-doped holey carbon matrix for highly efficient oxygen reduction reaction in zinc-air batteries. Appl. Catal. B. Environ. 2021, 285, 119780.
11. Fei, H.; Dong, J.; Chen, D.; et al. Single atom electrocatalysts supported on graphene or graphene-like carbons. Chem. Soc. Rev. 2019, 48, 5207-41.
12. Li, Y.; Kong, M.; Hu, J.; Zhou, J. Carbon-microcuboid-supported phosphorus-coordinated single atomic copper with ultrahigh content and its abnormal modification to Na storage behaviors. Adv. Energy. Mater. 2020, 10, 2000400.
13. Zhang, D.; Ma, X.; Wu, L.; et al. Coupling low-tortuosity carbon matrix with single-atom chemistry enables dendrite-free potassium-metal anode. Adv. Energy. Mater. 2023, 13, 2203277.
14. Qiu, D.; Zhao, W.; Zhang, B.; et al. Ni-single atoms modification enabled kinetics enhanced and ultra-stable hard carbon anode for sodium-ion batteries. Adv. Energy. Mater. 2024, 14, 2400002.
15. Lu, Z.; Wang, J.; Feng, W.; et al. Zinc single-atom-regulated hard carbons for high-rate and low-temperature sodium-ion batteries. Adv. Mater. 2023, 35, 2211461.
16. Ding, G.; Li, Z.; Wei, L.; et al. Regulating the sodium storage sites in nitrogen-doped carbon materials by sulfur-doping engineering for sodium ion batteries. Electrochim. Acta. 2022, 424, 140645.
17. Xu, Q.; Li, Y.; Wu, C.; et al. Kinetically accelerated and high-mass loaded lithium storage enabled by atomic iron embedded carbon nanofibers. Nano. Res. 2022, 15, 6176-83.
18. Xue, Y.; Li, Y.; Luo, G.; Shi, K.; Liu, E.; Zhou, J. Using a dynamic inhibition concept to achieve content-controllable synthesis of N-coordinated Cu atoms as reversible active site toward super Li-ion capacitors. Adv. Energy. Mater. 2020, 10, 2002644.
19. Han, Y.; Duan, H.; Zhou, C.; et al. Stabilizing cobalt single atoms via flexible carbon membranes as bifunctional electrocatalysts for binder-free zinc-air batteries. Nano. Lett. 2022, 22, 2497-505.
20. Wang, X.; Wang, Y.; Cui, L.; et al. Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100% CO selectivity. Chin. Chem. Lett. 2024, 35, 110031.
21. Wang, H.; Chuai, H.; Chen, X.; Lin, J.; Zhang, S.; Ma, X. Self-supported porous carbon nanofibers decorated with single Ni atoms for efficient CO2 electroreduction. ACS. Appl. Mater. Interfaces. 2023, 15, 1376-83.
22. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996, 54, 11169.
23. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865.
24. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999, 59, 1758.
25. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B. 1994, 50, 17953.
26. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
27. Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901-4.
28. Hardwick, L.; Buqa, H.; Novak, P. Graphite surface disorder detection using in situ Raman microscopy. Solid. State. Ionics. 2006, 177, 2801-6.
29. Xie, J.; Li, J.; Li, X.; et al. Ultrahigh “relative energy density” and mass loading of carbon cloth anodes for K-ion batteries. CCS. Chem. 2021, 3, 791-9.
30. Zhang, Z.; Sun, J.; Wang, F.; Dai, L. Efficient oxygen reduction reaction (ORR) Catalysts based on single iron atoms dispersed on a hierarchically structured porous carbon framework. Angew. Chem. Int. Ed. 2018, 57, 9038-43.
31. Ren, H.; Wang, Y.; Yang, Y.; et al. Fe/N/C nanotubes with atomic Fe sites: a highly active cathode catalyst for alkaline polymer electrolyte fuel cells. ACS. Catal. 2017, 7, 6485-92.
32. Gao, L.; Zhang, G.; Cai, J.; Huang, L.; Zhou, J.; Zhang, L. Rationally exfoliating chitin into 2D hierarchical porous carbon nanosheets for high-rate energy storage. Nano. Res. 2020, 13, 1604-13.
33. Sun, X.; Tuo, Y.; Ye, C.; et al. Phosphorus induced electron localization of single iron sites for boosted CO2 electroreduction reaction. Angew. Chem. Int. Ed. 2021, 60, 23614-8.
34. Zhuang, Z.; Liu, C.; Yan, Y.; Ma, P.; Tan, D. Q. Zn-CxNy nanoparticle arrays derived from a metal-organic framework for ultralow-voltage hysteresis and stable Li metal anodes. J. Mater. Chem. A. 2021, 9, 27095-101.
35. Wang, T.; Sang, X.; Zheng, W.; et al. Gas diffusion strategy for inserting atomic iron sites into graphitized carbon supports for unusually high-efficient CO2 electroreduction and high-performance Zn-CO2 batteries. Adv. Mater. 2020, 32, 2002430.
36. Ni, W.; Liu, Z.; Zhang, Y.; et al. Electroreduction of carbon dioxide driven by the intrinsic defects in the carbon plane of a single Fe-N4 site. Adv. Mater. 2021, 33, 2003238.
37. Xiao, M.; Xing, Z.; Jin, Z.; et al. Preferentially engineering FeN4 edge sites onto graphitic nanosheets for highly active and durable oxygen electrocatalysis in rechargeable Zn-air batteries. Adv. Mater. 2020, 32, 2004900.
38. Yu, D.; Ma, Y.; Hu, F.; et al. Dual-sites coordination engineering of single atom catalysts for flexible metal-air batteries. Adv. Energy. Mater. 2021, 11, 2101242.
39. Xue, C.; Zhao, J.; Liu, Y.; Li, X.; Zhang, J.; Zhang, J. Regulating the shell thickness of nitrogen-doped hollow carbon nanospheres for enhanced electrochemical performance. Ceram. Int. 2023, 49, 5102-9.
40. Tang, Z.; Zhou, S.; Huang, Y.; et al. Improving the initial coulombic efficiency of carbonaceous materials for Li/Na-ion batteries: origins, solutions, and perspectives. Electrochem. Energy. Rev. 2023, 6, 8.
41. Li, X.; Xue, C.; Liu, Y.; Zhao, J.; Zhang, J.; Zhang, J. Amorphous structure and sulfur doping synergistically inducing defect-rich short carbon nanotubes as a superior anode material in lithium-ion batteries. Electrochim. Acta. 2023, 440, 141697.
42. Li, X.; Wang, Y.; Lv, L.; Zhu, G.; Qu, Q.; Zheng, H. Electroactive organics as promising anode materials for rechargeable lithium ion and sodium ion batteries. Energy. Mater. 2022, 2, 200014.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.