1. Schubert M, Böttcher L, Gamper E, Wagner P, Stoll E. Detectability of space debris objects in the infrared spectrum. Acta Astronautica 2022;195:41-51.
2. Peltoniemi JI, Wilkman O, Gritsevich M, et al. Steering reflective space debris using polarised lasers. Adv Space Res 2021;67:1721-32.
3. Yu Y, Yue H, Zhao H, Yang F, Chen X. Optimal configuration of distributed HTS coils for the non-contact de-tumbling of space debris. Acta Astronautica 2022;191:491-501.
4. Maclay T, Mcknight D. Space environment management: framing the objective and setting priorities for controlling orbital debris risk. J Space Saf Eng 2021;8:93-7.
5. Lewis HG. Understanding long-term orbital debris population dynamics. J Space Saf Eng 2020;7:164-70.
7. Mcknight D, Witner R, Letizia F, et al. Identifying the 50 statistically-most-concerning derelict objects in LEO. Acta Astronautica 2021;181:282-91.
9. Celletti A, Efthymiopoulos C, Gachet F, et al. Dynamical models and the onset of chaos in space debris. Int J Non Linear Mech 2017;90:147-163.
10. Aslanov V, Ledkov A. Detumbling of axisymmetric space debris during transportation by ion beam shepherd in 3D case. Adv Space Res 2022;69:570-80.
13. Allworth J, Windrim L, Bennett J, Bryson M. A transfer learning approach to space debris classification using observational light curve data. Acta Astronautica 2021;181:301-15.
14. Pardini C, Anselmo L. Evaluating the impact of space activities in low earth orbit. Acta Astronautica 2021;184:11-22.
15. Miraux L. Environmental limits to the space sector’s growth. Sci Total Environ 2022;806:150862.
16. Liou J. An active debris removal parametric study for LEO environment remediation. Adv Space Res 2011;47:1865-76.
17. Fatima AM, Noor AMA. Space debris low earth orbit (LEO). Int J Sci (IJSR) 2013;4:1591-94.
19. Amin MG, Closas P, Broumandan A, Volakis JL. Vulnerabilities, threats, and authentication in satellite-based navigation systems [scanning the issue]. Proc IEEE 2016;104:1169-73.
20. Buesnel G. Threats to satellite navigation systems. Network Security 2015;2015:14-8.
21. Zannoni D. Out of sight, out of mind? The proliferation of space debris and international law. Leiden J Int Law 2022;35:295-314.
22. Rex D. Will space run out of space? The orbital debris problem and its mitigation. Space Policy 1998;14:95-105.
23. Campbell J, Hughes K, Vignjevic R, et al. Development of modelling design tool for harpoon for active space debris removal. Int J Impact Eng 2022;166:104236.
24. Castronuovo MM. Active space debris removal-a preliminary mission analysis and design. Acta Astronautica 2011;69:848-59.
26. Macauley MK. The economics of space debris: Estimating the costs and benefits of debris mitigation. Acta Astronautica 2015;115:160-4.
27. Zhu MK. A break-even analysis of orbital debris and space preservation through monetization. J Space Saf Eng 2022;9:600-11.
29. Shan M, Guo J, Gill E. Review and comparison of active space debris capturing and removal methods. Prog Aerosp Sci 2016;80:18-32.
31. Naimi B, Voinov A. StellaR: A software to translate Stella models into R open-source environment. Environ Model Softw 2012;38:117-8.
32. Laszlo A, Krippner S. Systems theories: their origins, foundations, and development. Systems theories and a priori aspects of perception. Elsevier; 1998. p. 47-74.
35. Jiang Y. Debris cloud of India anti-satellite test to Microsat-R satellite. Heliyon 2020;6:e04692.
37. Tan A, Edwards V, Schamschula M. Fragments analyses of the soviet anti-satellite tests-round 1. Adv Aerospa Sci Appl 2014;4:21-33.
38. Milowicki GV, Johnson-freese J. Strategic choices: examining the United States military response to the Chinese anti-satellite test. Astropolitics 2008;6:1-21.
40. Johnson NL. Operation burnt frost: a view from inside. Space Policy 2021;56:101411.
42. Bartels N, Allenspacher P, Hampf D, et al. Space object identification via polarimetric satellite laser ranging. Commun Eng 2022:1.
43. Krag H, Serrano M, Braun V, et al. A 1 cm space debris impact onto the Sentinel-1A solar array. Acta Astronautica 2017;137:434-43.
44. Schaus V, Alessi EM, Schettino G, Rossi A, Stoll E. On the practical exploitation of perturbative effects in low Earth orbit for space debris mitigation. Adv Space Res 2019;63:1979-91.
45. Chen S. The space debris problem. Asian Perspective 2011;35:537-58.
46. Pardini C, Anselmo L. Revisiting the collision risk with cataloged objects for the Iridium and COSMO-SkyMed satellite constellations. Acta Astronautica 2017;134:23-32.
47. Liou JC, Johnson NL. Planetary science. Risks in space from orbiting debris. Science 2006;311:340-1.
51. Mark CP, Kamath S. Review of active space debris removal methods. Space Policy 2019;47:194-206.
54. Stokes H, Akahoshi Y, Bonnal C, et al. Evolution of ISO’s space debris mitigation standards. J Space Saf Eng 2020;7:325-31.
55. Adilov N, Alexander PJ, Cunningham BM. The economics of orbital debris generation, accumulation, mitigation, and remediation. J Space Saf Eng 2020;7:447-50.
56. Pelton JN. A path forward to better space security: finding new solutions to space debris, space situational awareness and space traffic management. J Space Saf Eng 2019;6:92-100.
57. Jichuan W, Jianheng Z, Yuanjie H, et al. Removal of space debris by pulsed laser: overview and future perspective. Laser Part 2022;34:1-15.
58. Vitt E. Space debris: physical and legal considerations. Space Policy 1989;5:129-37.
59. Haroun F, Ajibade S, Oladimeji P, Igbozurike JK. Toward the sustainability of outer space: addressing the issue of space debris. New Space 2021;9:63-71.
60. Murtaza A, Pirzada SJH, Xu T, Jianwei L. Orbital debris threat for space sustainability and way forward (review article). IEEE Access 2020;8:61000-19.
61. Mironov VV, Murtazov AK. Retrospective on the problem of space debris. part 2. monitoring of space debris of natural origin in near-earth space using optical methods of meteor astronomy. Cosmic Res 2021;59:36-45.
62. Liebovitch LS, Coleman PT, Fisher J. Approaches to understanding sustainable peace: qualitative causal loop diagrams and quantitative mathematical models. Am Behav Sci 2020;64:123-144.
63. Ventara Systems. Vensim. Available from: https://vensim.com/ [Last accessed on 2 Feb 2023].
66. Ebisuzaki T, Quinn MN, Wada S, et al. Demonstration designs for the remediation of space debris from the international space station. Acta Astronautica 2015;112:102-13.
67. Rossi A, Valsecchi GB. Collision risk against space debris in Earth orbits. Celest Mech Dyn Astron 2006;95:345-56.
69. Janssen MA, Smith-heisters S, Aggarwal R, Schoon ML. “Tragedy of the commons” as conventional wisdom in sustainability education. Environ Educ Res 2019;25:1587-604.
70. Gardner ST. Sisyphus and climate change: educating in the context of tragedies of the commons. Philosophies 2021;6:4.
71. Sauser B, Boardman J. Systemigram modeling for contextualizing complexity in system of systems. In: Rainey LB, Tolk A, editors. Modeling and simulation support for system of systems engineering applications. Wiley; 2014. p. 273-302.
72. Blair CD, Boardman JT, Sauser BJ. Communicating strategic intent with systemigrams: application to the network-enabled challenge. Syst Engin 2007;10:309-22.
73. Sauser B, Mansouri M, Omer M. Using systemigrams in problem definition: a case study in maritime resilience for homeland security. J Homel Secur Emerg Manag 2011:8.
74. Belward AS, Skøien JO. Who launched what, when and why; trends in global land-cover observation capacity from civilian earth observation satellites. ISPRS J Photogramm Remote Sens 2015;103:115-28.
77. Barbara NH, Lizy-destrez S, Guardabasso P, Alary D. New GEO paradigm: re-purposing satellite components from the GEO graveyard. Acta Astronautica 2020;173:155-63.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.