REFERENCES
1. Schubert M, Böttcher L, Gamper E, Wagner P, Stoll E. Detectability of space debris objects in the infrared spectrum. Acta Astronautica 2022;195:41-51.
2. Peltoniemi JI, Wilkman O, Gritsevich M, et al. Steering reflective space debris using polarised lasers. Adv Space Res 2021;67:1721-32.
3. Yu Y, Yue H, Zhao H, Yang F, Chen X. Optimal configuration of distributed HTS coils for the non-contact de-tumbling of space debris. Acta Astronautica 2022;191:491-501.
4. Maclay T, Mcknight D. Space environment management: framing the objective and setting priorities for controlling orbital debris risk. J Space Saf Eng 2021;8:93-7.
5. Lewis HG. Understanding long-term orbital debris population dynamics. J Space Saf Eng 2020;7:164-70.
7. Mcknight D, Witner R, Letizia F, et al. Identifying the 50 statistically-most-concerning derelict objects in LEO. Acta Astronautica 2021;181:282-91.
9. Celletti A, Efthymiopoulos C, Gachet F, et al. Dynamical models and the onset of chaos in space debris. Int J Non Linear Mech 2017;90:147-163.
10. Aslanov V, Ledkov A. Detumbling of axisymmetric space debris during transportation by ion beam shepherd in 3D case. Adv Space Res 2022;69:570-80.
13. Allworth J, Windrim L, Bennett J, Bryson M. A transfer learning approach to space debris classification using observational light curve data. Acta Astronautica 2021;181:301-15.
14. Pardini C, Anselmo L. Evaluating the impact of space activities in low earth orbit. Acta Astronautica 2021;184:11-22.
15. Miraux L. Environmental limits to the space sector’s growth. Sci Total Environ 2022;806:150862.
16. Liou J. An active debris removal parametric study for LEO environment remediation. Adv Space Res 2011;47:1865-76.
17. Fatima AM, Noor AMA. Space debris low earth orbit (LEO). Int J Sci (IJSR) 2013;4:1591-94.
19. Amin MG, Closas P, Broumandan A, Volakis JL. Vulnerabilities, threats, and authentication in satellite-based navigation systems [scanning the issue]. Proc IEEE 2016;104:1169-73.
20. Buesnel G. Threats to satellite navigation systems. Network Security 2015;2015:14-8.
21. Zannoni D. Out of sight, out of mind? The proliferation of space debris and international law. Leiden J Int Law 2022;35:295-314.
22. Rex D. Will space run out of space? The orbital debris problem and its mitigation. Space Policy 1998;14:95-105.
23. Campbell J, Hughes K, Vignjevic R, et al. Development of modelling design tool for harpoon for active space debris removal. Int J Impact Eng 2022;166:104236.
24. Castronuovo MM. Active space debris removal-a preliminary mission analysis and design. Acta Astronautica 2011;69:848-59.
26. Macauley MK. The economics of space debris: Estimating the costs and benefits of debris mitigation. Acta Astronautica 2015;115:160-4.
27. Zhu MK. A break-even analysis of orbital debris and space preservation through monetization. J Space Saf Eng 2022;9:600-11.
29. Shan M, Guo J, Gill E. Review and comparison of active space debris capturing and removal methods. Prog Aerosp Sci 2016;80:18-32.
31. Naimi B, Voinov A. StellaR: A software to translate Stella models into R open-source environment. Environ Model Softw 2012;38:117-8.
32. Laszlo A, Krippner S. Systems theories: their origins, foundations, and development. Systems theories and a priori aspects of perception. Elsevier; 1998. p. 47-74.
35. Jiang Y. Debris cloud of India anti-satellite test to Microsat-R satellite. Heliyon 2020;6:e04692.
37. Tan A, Edwards V, Schamschula M. Fragments analyses of the soviet anti-satellite tests-round 1. Adv Aerospa Sci Appl 2014;4:21-33.
38. Milowicki GV, Johnson-freese J. Strategic choices: examining the United States military response to the Chinese anti-satellite test. Astropolitics 2008;6:1-21.
40. Johnson NL. Operation burnt frost: a view from inside. Space Policy 2021;56:101411.
42. Bartels N, Allenspacher P, Hampf D, et al. Space object identification via polarimetric satellite laser ranging. Commun Eng 2022:1.
43. Krag H, Serrano M, Braun V, et al. A 1 cm space debris impact onto the Sentinel-1A solar array. Acta Astronautica 2017;137:434-43.
44. Schaus V, Alessi EM, Schettino G, Rossi A, Stoll E. On the practical exploitation of perturbative effects in low Earth orbit for space debris mitigation. Adv Space Res 2019;63:1979-91.
45. Chen S. The space debris problem. Asian Perspective 2011;35:537-58.
46. Pardini C, Anselmo L. Revisiting the collision risk with cataloged objects for the Iridium and COSMO-SkyMed satellite constellations. Acta Astronautica 2017;134:23-32.
47. Liou JC, Johnson NL. Planetary science. Risks in space from orbiting debris. Science 2006;311:340-1.
51. Mark CP, Kamath S. Review of active space debris removal methods. Space Policy 2019;47:194-206.
54. Stokes H, Akahoshi Y, Bonnal C, et al. Evolution of ISO’s space debris mitigation standards. J Space Saf Eng 2020;7:325-31.
55. Adilov N, Alexander PJ, Cunningham BM. The economics of orbital debris generation, accumulation, mitigation, and remediation. J Space Saf Eng 2020;7:447-50.
56. Pelton JN. A path forward to better space security: finding new solutions to space debris, space situational awareness and space traffic management. J Space Saf Eng 2019;6:92-100.
57. Jichuan W, Jianheng Z, Yuanjie H, et al. Removal of space debris by pulsed laser: overview and future perspective. Laser Part 2022;34:1-15.
58. Vitt E. Space debris: physical and legal considerations. Space Policy 1989;5:129-37.
59. Haroun F, Ajibade S, Oladimeji P, Igbozurike JK. Toward the sustainability of outer space: addressing the issue of space debris. New Space 2021;9:63-71.
60. Murtaza A, Pirzada SJH, Xu T, Jianwei L. Orbital debris threat for space sustainability and way forward (review article). IEEE Access 2020;8:61000-19.
61. Mironov VV, Murtazov AK. Retrospective on the problem of space debris. part 2. monitoring of space debris of natural origin in near-earth space using optical methods of meteor astronomy. Cosmic Res 2021;59:36-45.
62. Liebovitch LS, Coleman PT, Fisher J. Approaches to understanding sustainable peace: qualitative causal loop diagrams and quantitative mathematical models. Am Behav Sci 2020;64:123-144.
63. Ventara Systems. Vensim. Available from: https://vensim.com/ [Last accessed on 2 Feb 2023].
66. Ebisuzaki T, Quinn MN, Wada S, et al. Demonstration designs for the remediation of space debris from the international space station. Acta Astronautica 2015;112:102-13.
67. Rossi A, Valsecchi GB. Collision risk against space debris in Earth orbits. Celest Mech Dyn Astron 2006;95:345-56.
69. Janssen MA, Smith-heisters S, Aggarwal R, Schoon ML. “Tragedy of the commons” as conventional wisdom in sustainability education. Environ Educ Res 2019;25:1587-604.
70. Gardner ST. Sisyphus and climate change: educating in the context of tragedies of the commons. Philosophies 2021;6:4.
71. Sauser B, Boardman J. Systemigram modeling for contextualizing complexity in system of systems. In: Rainey LB, Tolk A, editors. Modeling and simulation support for system of systems engineering applications. Wiley; 2014. p. 273-302.
72. Blair CD, Boardman JT, Sauser BJ. Communicating strategic intent with systemigrams: application to the network-enabled challenge. Syst Engin 2007;10:309-22.
73. Sauser B, Mansouri M, Omer M. Using systemigrams in problem definition: a case study in maritime resilience for homeland security. J Homel Secur Emerg Manag 2011:8.
74. Belward AS, Skøien JO. Who launched what, when and why; trends in global land-cover observation capacity from civilian earth observation satellites. ISPRS J Photogramm Remote Sens 2015;103:115-28.
77. Barbara NH, Lizy-destrez S, Guardabasso P, Alary D. New GEO paradigm: re-purposing satellite components from the GEO graveyard. Acta Astronautica 2020;173:155-63.