REFERENCES
1. https://link.springer.com/gp/book/9780792371489. ]]>.
2. https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=4709&context=smallsat. ]]>.
3. Stephens GL, Vane DG, Boain RJ, et al. The CloudSat mission and the A-Train: a new dimension of space-based observations of clouds and precipitation. Bull Amer Meteor Soc 2002;83:1771-90.
4. Kopacz JR, Herschitz R, Roney J. Small satellites an overview and assessment. Acta Astronautica 2020;170:93-105.
5. https://hal.archives-ouvertes.fr/hal-03494123/file/2021-SmallSat-AutomatedOperationsGomSpace.pdf. ]]>.
6. Ben-Larbi MK, Pozo KF, Haylok T, et al. Towards the automated operations of large distributed satellite systems. Part 1: Review and paradigm shifts. Advances in Space Research 2021;67:3598-619.
7. https://digitalcommons.usu.edu/smallsat/2021/all2021/136/. ]]>.
8. Lalbakhsh A, Pitcairn A, Mandal K, et al. Darkening Low-Earth Orbit Satellite Constellations: A Review. IEEE Access 2022;10:24383-94.
9. Deng R, Di B, Zhang H, Kuang L, Song L. Ultra-dense LEO satellite constellations: how many LEO satellites do we need? IEEE Trans Wireless Commun 2021;20:4843-57.
10. Gao Y, Wei C. Planning management exploration in the development of large-scale satellite constellation systems. In: International Conference on Intelligent Automation and Soft Computing. Springer; 2021. pp. 469-79.
11. Guo S, Zhou W, Zhang J, Sun F, Yu D. Integrated constellation design and deployment method for a regional augmented navigation satellite system using piggyback launches. Astrodynamics 2021;5:49-60.
12. Arnas D, Linares R. Uniform Satellite Constellation Reconfiguration. Journal of Guidance, Control, and Dynamics 2022:1-14.
13. Ullman JD. NP-complete scheduling problems. Journal of Computer and System Sciences 1975;10:384-93.
14. Burkard R, Dell'Amico M, Martello S. Assignment problems, revised reprint. vol. 106. Siam; 2012.
15. Gerkey BP, Matarić MJ. A formal analysis and taxonomy of task allocation in multi-robot systems. The International Journal of Robotics Research 2004;23:939-54.
16. Korsah GA, Stentz A, Dias MB. A comprehensive taxonomy for multi-robot task allocation. The International Journal of Robotics Research 2013;32:1495-512.
17. Berger J, Lo N, Barkaoui M. QUEST – A new quadratic decision model for the multi-satellite scheduling problem. Computers & Operations Research 2020;115:104822.
18. He L, de Weerdt M, Yorke-Smith N. Time/sequence-dependent scheduling: the design and evaluation of a general purpose tabu-based adaptive large neighbourhood search algorithm. J Intell Manuf 2020;31:1051-78.
19. Mitrovic-Minic S, Thomson D, Berger J, Secker J. Collection planning and scheduling for multiple heterogeneous satellite missions: Survey, optimization problem, and mathematical programming formulation. In: Modeling and Optimization in Space Engineering. Springer; 2019. pp. 271-305.
20. Nag S, Li AS, Ravindra V, et al. Autonomous scheduling of agile spacecraft constellations with delay tolerant networking for reactive imaging. arXiv preprint arXiv: 201009940 2020.
21. Sinha PK, Dutta A. Multi-satellite task allocation algorithm for earth observation. In: 2016 IEEE Region 10 Conference (TENCON). IEEE; 2016. pp. 403-8.
22. Tangpattanakul P, Jozefowiez N, Lopez P. A multi-objective local search heuristic for scheduling Earth observations taken by an agile satellite. European Journal of Operational Research 2015;245:542-54.
23. Yao F, Li J, Chen Y, Chu X, Zhao B. Task allocation strategies for cooperative task planning of multi-autonomous satellite constellation. Advances in Space Research 2019;63:1073-84.
24. Deng B, Jiang C, Kuang L, et al. Two-phase task scheduling in data relay satellite systems. IEEE Trans Veh Technol 2017;67:1782-93.
25. Gu X, Bai J, Zhang C, Gao H. Study on TT&C resources scheduling technique based on inter-satellite link. Acta Astronautica 2014;104:26-32.
26. Karapetyan D, Mitrovic-Minic S, Malladi KT, Punnen AP. The satellite downlink scheduling problem: A case study of radarsat-2. In: Case Studies in Operations Research. Springer; 2015. pp. 497-516.
27. Li J, Chen H, Jing N. A data transmission scheduling algorithm for rapid-response earth-observing operations. Chinese Journal of Aeronautics 2014;27:349-64.
28. Song B, Yao F, Chen Y, Chen Y, Chen Y. A hybrid genetic algorithm for satellite image downlink scheduling problem. Discrete Dynamics in Nature and Society 2018;2018:1-11.
29. Spangelo S, Cutler J, Gilson K, Cohn A. Optimization-based scheduling for the single-satellite, multi-ground station communication problem. Computers & Operations Research 2015;57:1-16.
30. Zhao Wh, Zhao J, Zhao Sh, et al. Resources scheduling for data relay satellite with microwave and optical hybrid links based on improved niche genetic algorithm. Optik 2014;125:3370-5.
31. https://ojs.aaai.org/index.php/ICAPS/article/view/13784. ]]>.
32. Hu X, Zhu W, An B, Jin P, Xia W. A branch and price algorithm for EOS constellation imaging and downloading integrated scheduling problem. Computers and Operations Research 2019;104:74-89.
33. Peng S, Chen H, Li J, Jing N. Approximate path searching method for single-satellite observation and transmission task planning problem. Mathematical Problems in Engineering 2017:2017.
34. McDowell JC. The low earth orbit satellite population and impacts of the SpaceX Starlink constellation. The Astrophysical Journal Letters 2020;892:L36.
35. Mesbahi M, Egerstedt M. Graph theoretic methods in multiagent networks. vol. 33. Princeton University Press; 2010.
36. http://web.ist.utl.pt/~ist11038/acad/or/LP/2010ChenBatsonDangApplIntProg.pdf. ]]>.
37. http://lavalle.pl/planning/. ]]>.
38. https://link.springer.com/gp/book/9780792371489. ]]>.