REFERENCES

1. Zhang X, Zhang Z, Shen A, et al. Legumes as an alternative protein source in plant-based foods: applications, challenges, and strategies. Curr Res Food Sci. 2024;9:100876.

2. Aghababaei F, McClements DJ, Pignitter M, Hadidi M. A comprehensive review of processing, functionality, and potential applications of lentil proteins in the food industry. Adv Colloid Interface Sci. 2024;333:103280.

3. Lisciani S, Marconi S, Le Donne C, et al. Legumes and common beans in sustainable diets: nutritional quality, environmental benefits, spread and use in food preparations. Front Nutr. 2024;11:1385232.

4. Pelgrom PJ, Vissers AM, Boom RM, Schutyser MA. Dry fractionation for production of functional pea protein concentrates. Food Res Int. 2013;53:232-9.

5. Zhao H, Shen C, Wu Z, Zhang Z, Xu C. Comparison of wheat, soybean, rice, and pea protein properties for effective applications in food products. J Food Biochem. 2020;44:e13157.

6. Eze CR, Kwofie EM, Adewale P, Lam E, Ngadi M. Advances in legume protein extraction technologies: a review. Innov Food Sci Emerg Technol. 2022;82:103199.

7. Clemente A, Olias R. Beneficial effects of legumes in gut health. Curr Opin Food Sci. 2017;14:32-6.

8. Ferreira H, Duarte D, Carneiro TJ, et al. Impact of a legumes diet on the human gut microbiome articulated with fecal and plasma metabolomes: a pilot study. Clin Nutr ESPEN. 2024;63:332-45.

9. Wu X, Tjahyo AS, Volchanskaya VSB, et al. A legume-enriched diet improves metabolic health in prediabetes mediated through gut microbiome: a randomized controlled trial. Nat Commun. 2025;16:942.

10. Singh RK, Chang HW, Yan D, et al. Influence of diet on the gut microbiome and implications for human health. J Transl Med. 2017;15:73.

11. Özdemir A, Buyuktuncer Z. Dietary legumes and gut microbiome: a comprehensive review. Crit Rev Food Sci Nutr. 2025;65:5956-70.

12. Alessandri G, Fontana F, Mancabelli L, et al. Exploring species-level infant gut bacterial biodiversity by meta-analysis and formulation of an optimized cultivation medium. NPJ Biofilms Microbiomes. 2022;8:88.

13. Vandeputte D, Kathagen G, D’hoe K, et al. Quantitative microbiome profiling links gut community variation to microbial load. Nature. 2017;551:507-11.

14. Rawlings ND, Barrett AJ, Bateman A. MEROPS: the peptidase database. Nucleic Acids Res. 2010;38:D227-33.

15. Teufel F, Almagro Armenteros JJ, Johansen AR, et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat Biotechnol. 2022;40:1023-5.

16. Mancabelli L, Milani C, De Biase R, et al. Taxonomic and metabolic development of the human gut microbiome across life stages: a worldwide metagenomic investigation. mSystems. 2024;9:e0129423.

17. Li L, Abou-Samra E, Ning Z, et al. An in vitro model maintaining taxon-specific functional activities of the gut microbiome. Nat Commun. 2019;10:4146.

18. Milani C, Lugli GA, Fontana F, et al. METAnnotatorX2: a comprehensive tool for deep and shallow metagenomic data set analyses. mSystems. 2021;6:101128msystems0058321.

19. Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335-6.

20. Bokulich NA, Kaehler BD, Rideout JR, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2's q2-feature-classifier plugin. Microbiome. 2018;6:90.

21. Meslé MM, Gray CR, Dlakić M, DuBois JL. Bacteroides thetaiotaomicron, a model gastrointestinal tract species, prefers heme as an iron source, yields protoporphyrin IX as a product, and acts as a heme reservoir. Microbiol Spectr. 2023;11:e0481522.

22. Peng Y, Tun HM. Meet the extended Segatella copri complex. Cell Host Microbe. 2023;31:1766-9.

23. Arumugam M, Raes J, Pelletier E, et al; MetaHIT Consortium. Enterotypes of the human gut microbiome. Nature. 2011;473:174-80.

24. Lopez-Siles M, Duncan SH, Garcia-Gil LJ, Martinez-Medina M. Faecalibacterium prausnitzii: from microbiology to diagnostics and prognostics. ISME J. 2017;11:841-52.

25. Huang YJ, Lewis CA, Wright C, et al. Faecalibacterium prausnitzii A2-165 metabolizes host- and media-derived chemicals and induces transcriptional changes in colonic epithelium in GuMI human gut microphysiological system. Microbiome Res Rep. 2024;3:30.

26. Martin AJM, Serebrinsky-Duek K, Riquelme E, Saa PA, Garrido D. Microbial interactions and the homeostasis of the gut microbiome: the role of bifidobacterium. Microbiome Res Rep. 2023;2:17.

27. Louis P, Flint HJ. Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol. 2017;19:29-41.

28. Li L, Zhang C, Liu B, et al. Factors involved in the abundant dominance of Bifidobacterium longum within the genus in the human gut. Food Biosci. 2024;61:104638.

29. Cui S, Gu Z, Wang W, et al. Characterization of peptides available to different bifidobacteria. LWT. 2022;169:113958.

30. Martín R, Rios-Covian D, Huillet E, et al. Faecalibacterium: a bacterial genus with promising human health applications. FEMS Microbiol Rev. 2023;47:fuad039.

31. Fagundes RR, Bourgonje AR, Saeed A, et al. Inulin-grown Faecalibacterium prausnitzii cross-feeds fructose to the human intestinal epithelium. Gut Microbes. 2021;13:1993582.

32. Li J, Gálvez EJC, Amend L, et al. A versatile genetic toolbox for Prevotella copri enables studying polysaccharide utilization systems. EMBO J. 2021;40:e108287.

33. Abdelsalam NA, Hegazy SM, Aziz RK. The curious case of Prevotella copri. Gut Microbes. 2023;15:2249152.

34. Amaretti A, Gozzoli C, Simone M, et al. Profiling of protein degraders in cultures of human gut microbiota. Front Microbiol. 2019;10:2614.

35. Price MN, Deutschbauer AM, Arkin AP. GapMind: automated annotation of amino acid biosynthesis. mSystems. 2020;5:e00291-20.

36. Bai Z, Zhang N, Jin Y, et al. Comprehensive analysis of 84 Faecalibacterium prausnitzii strains uncovers their genetic diversity, functional characteristics, and potential risks. Front Cell Infect Microbiol. 2022;12:919701.

37. Panwar D, Briggs J, Fraser ASC, Stewart WA, Brumer H. Transcriptional delineation of polysaccharide utilization loci in the human gut commensal Segatella copri DSM18205 and co-culture with exemplar Bacteroides species on dietary plant glycans. Appl Environ Microbiol. 2025;91:e0175924.

38. Venema K, van den Abbeele P. Experimental models of the gut microbiome. Best Pract Res Clin Gastroenterol. 2013;27:115-26.

39. Culp EJ, Goodman AL. Cross-feeding in the gut microbiome: ecology and mechanisms. Cell Host Microbe. 2023;31:485-99.

40. Shetty SA, Kuipers B, Atashgahi S, Aalvink S, Smidt H, de Vos WM. Inter-species metabolic interactions in an in-vitro minimal human gut microbiome of core bacteria. NPJ Biofilms Microbiomes. 2022;8:21.

41. Jia J, Dell’Olio A, Izquierdo-Sandoval D, et al. Exploiting the interactions between plant proteins and gut microbiota to promote intestinal health. Trends Food Sci Tech. 2024;153:104749.

42. Bartlett A, Kleiner M. Dietary protein and the intestinal microbiota: an understudied relationship. iScience. 2022;25:105313.

43. Blakeley-Ruiz JA, Bartlett A, McMillan AS, et al. Dietary protein source alters gut microbiota composition and function. ISME J. 2025;19:wraf048.

44. Rivière A, Selak M, Geirnaert A, Van den Abbeele P, De Vuyst L. Complementary mechanisms for degradation of inulin-type fructans and arabinoxylan oligosaccharides among bifidobacterial strains suggest bacterial cooperation. Appl Environ Microbiol. 2018;84:e02893-17.

Microbiome Research Reports
ISSN 2771-5965 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/