REFERENCES

1. Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74:229-63.

2. Soerjomataram I, Bray F. Planning for tomorrow: global cancer incidence and the role of prevention 2020-2070. Nat Rev Clin Oncol. 2021;18:663-72.

3. Berg G, Rybakova D, Fischer D, et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome. 2020;8:103.

4. Doré J, Ortega Ugalde S. Human-microbes symbiosis in health and disease, on earth and beyond planetary boundaries. Front Astron Space Sci. 2023;10:1180522.

5. Sepich-Poore GD, Zitvogel L, Straussman R, Hasty J, Wargo JA, Knight R. The microbiome and human cancer. Science. 2021;371:eabc4552.

6. Sadrekarimi H, Gardanova ZR, Bakhshesh M, et al. Emerging role of human microbiome in cancer development and response to therapy: special focus on intestinal microflora. J Transl Med. 2022;20:301.

7. Thomas RM, Jobin C. The microbiome and cancer: is the ‘oncobiome’ mirage real? Trends Cancer. 2015;1:24-35.

8. Sipos A, Ujlaki G, Mikó E, et al. The role of the microbiome in ovarian cancer: mechanistic insights into oncobiosis and to bacterial metabolite signaling. Mol Med. 2021;27:33.

9. Li R, Shen J, Xu Y. Fusobacterium nucleatum and colorectal cancer. Infect Drug Resist. 2022;15:1115-20.

10. Joo JE, Chu YL, Georgeson P, et al. Intratumoral presence of the genotoxic gut bacteria pks+ E. coli, Enterotoxigenic Bacteroides fragilis, and Fusobacterium nucleatum and their association with clinicopathological and molecular features of colorectal cancer. Br J Cancer. 2024;130:728-40.

11. Chakaroun RM, Massier L, Kovacs P. Gut microbiome, intestinal permeability, and tissue bacteria in metabolic disease: perpetrators or bystanders? Nutrients. 2020;12:1082.

12. Kennedy MS, Chang EB. The microbiome: composition and locations. Prog Mol Biol Transl Sci. 2020;176:1-42.

13. Wilde J, Slack E, Foster KR. Host control of the microbiome: mechanisms, evolution, and disease. Science. 2024;385:eadi3338.

14. Donaldson GP, Ladinsky MS, Yu KB, et al. Gut microbiota utilize immunoglobulin A for mucosal colonization. Science. 2018;360:795-800.

15. Lenoir M, Martín R, Torres-Maravilla E, et al. Butyrate mediates anti-inflammatory effects of Faecalibacterium prausnitzii in intestinal epithelial cells through Dact3. Gut Microbes. 2020;12:1-16.

16. Aindelis G, Chlichlia K. Modulation of anti-tumour immune responses by probiotic bacteria. Vaccines. 2020;8:329.

17. de Martel C, Georges D, Bray F, Ferlay J, Clifford GM. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Health. 2020;8:e180-90.

18. Shanahan F, Ghosh TS, O’Toole PW. The healthy microbiome-what is the definition of a healthy gut microbiome? Gastroenterology. 2021;160:483-94.

19. Gupta VK, Kim M, Bakshi U, et al. A predictive index for health status using species-level gut microbiome profiling. Nat Commun. 2020;11:4635.

20. Ward DV, Bhattarai S, Rojas-Correa M, et al. The intestinal and oral microbiomes are robust predictors of COVID-19 severity the main predictor of COVID-19-related fatality. medRxiv 2021.

21. Gumenyuk LN, Golod MV, Silaeva NV, et al. Gut microbiota alterations and their relationship to the disease severity and some cytokine profile indicators in patients with COVID-19. Bull Russ State Med Univ. 2022:22-9. Available from: https://cyberleninka.ru/article/n/gut-microbiota-alterations-and-their-relationship-to-the-disease-severity-and-some-cytokine-profile-indicators-in-patients-with. [Last accessed 25 Feb 2025]

22. Kumavath R, Pavithran H, Paul S, Anju VT, Busi S, Dyavaiah M. Effects of gut microbiome and obesity on the development, progression and prevention of cancer (Review). Int J Oncol. 2024;64:4.

23. Qiu Q, Lin Y, Ma Y, et al. Exploring the emerging role of the gut microbiota and tumor microenvironment in cancer immunotherapy. Front Immunol. 2020;11:612202.

24. Liou JM, Malfertheiner P, Lee YC, et al; Asian Pacific Alliance on Helicobacter and Microbiota (APAHAM). Screening and eradication of Helicobacter pylori for gastric cancer prevention: the Taipei global consensus. Gut 2020;69:2093-112.

25. Ekström AM, Held M, Hansson LE, Engstrand L, Nyrén O. Helicobacter pylori in gastric cancer established by CagA immunoblot as a marker of past infection. Gastroenterology. 2001;121:784-91.

26. Uemura N, Okamoto S, Yamamoto S, et al. Helicobacter pylori infection and the development of gastric cancer. N Engl J Med. 2001;345:784-9.

27. Matsuda H, Iwahori K, Takeoka T, et al. Helicobacter pylori infection affects the tumor immune microenvironment of esophageal cancer patients. Anticancer Res. 2024;44:3799-805.

28. Wang C, Li W, Shao L, et al. Both extracellular vesicles from helicobacter pylori-infected cells and helicobacter pylori outer membrane vesicles are involved in gastric/extragastric diseases. Eur J Med Res. 2023;28:484.

29. Manos J. The human microbiome in disease and pathology. APMIS. 2022;130:690-705.

30. Radocchia G, Neroni B, Marazzato M. Chronic Intestinal Pseudo-Obstruction (CIPO): interplay between enteric nervous system, serotonin and mucosa-associated microbiota. 2023. Available from: https://iris.uniroma1.it/handle/11573/1700117. [Last accessed on 25 Feb 2025]

31. Song M, Chan AT, Sun J. Influence of the gut microbiome, diet, and environment on risk of colorectal cancer. Gastroenterology. 2020;158:322-40.

32. Zhao L, Zhang X, Zuo T, Yu J. The composition of colonic commensal bacteria according to anatomical localization in colorectal cancer. Engineering. 2017;3:90-7.

33. Han S, Zhuang J, Wu Y, Wu W, Yang X. Progress in research on colorectal cancer-related microorganisms and metabolites. Cancer Manag Res. 2020;12:8703-20.

34. Wu X, Wu Y, He L, Wu L, Wang X, Liu Z. Effects of the intestinal microbial metabolite butyrate on the development of colorectal cancer. J Cancer. 2018;9:2510-7.

35. Liu B, Tonkonogy SL, Sartor RB. Antigen-presenting cell production of IL-10 inhibits T-helper 1 and 17 cell responses and suppresses colitis in mice. Gastroenterology. 2011;141:653-62.e4.

36. Park I, Yoon SJ, Won S, Won SM, et al. Gut microbiota-based machine-learning signature for the diagnosis of alcohol-associated and metabolic dysfunction-associated steatotic liver disease. Sci Rep. 2024;14:16122.

37. Yang Y, Wang J, Su Q, et al. The mediation/moderation effects of gut microbiota on sleep quality and primary liver cancer: a mendelian randomization and case-control study. Nat Sci Sleep. 2024;16:663-74.

38. Wen Y, Luo Y, Qiu H, et al. Gut microbiota affects obesity susceptibility in mice through gut metabolites. Front Microbiol. 2024;15:1343511.

39. Méndez-Sánchez N, Valencia-Rodriguez A, Vera-Barajas A, et al. The mechanism of dysbiosis in alcoholic liver disease leading to liver cancer. Hepatoma Res. 2020;6:5.

40. Ginès P, Krag A, Abraldes JG, Solà E, Fabrellas N, Kamath PS. Liver cirrhosis. Lancet. 2021;398:1359-76.

41. Zheng Z, Wang B. The gut-liver axis in health and disease: the role of gut microbiota-derived signals in liver injury and regeneration. Front Immunol. 2021;12:775526.

42. Doden H, Sallam LA, Devendran S, et al. Metabolism of oxo-bile acids and characterization of recombinant 12α-hydroxysteroid dehydrogenases from bile acid 7α-dehydroxylating human gut bacteria. Appl Environ Microbiol. 2018;84:e00235-18.

43. Liu Y, Zhang S, Zhou W, Hu D, Xu H, Ji G. Secondary bile acids and tumorigenesis in colorectal cancer. Front Oncol. 2022;12:813745.

44. Engelmann C, Sheikh M, Sharma S, et al. Toll-like receptor 4 is a therapeutic target for prevention and treatment of liver failure. J Hepatol. 2020;73:102-12.

45. Fan H, Wang Y, Han M, et al. Multi-omics-based investigation of Bifidobacterium’s inhibitory effect on glioma: regulation of tumor and gut microbiota, and MEK/ERK cascade. Front Microbiol. 2024;15:1344284.

46. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209-49.

47. Nakatsu G, Andreeva N, MacDonald MH, Garrett WS. Interactions between diet and gut microbiota in cancer. Nat Microbiol. 2024;9:1644-54.

48. Wu Z, Huang Y, Zhang R, et al. Sex differences in colorectal cancer: with a focus on sex hormone-gut microbiome axis. Cell Commun Signal. 2024;22:167.

49. Sosnowski K, Przybyłkowski A. Ethanol-induced changes to the gut microbiome compromise the intestinal homeostasis: a review. Gut Microbes. 2024;16:2393272.

50. Dono A, Nickles J, Rodriguez-Armendariz AG, et al. Glioma and the gut–brain axis: opportunities and future perspectives. Neurooncol Adv. 2022;4:vdac054.

51. Cummins J, Tangney M. Bacteria and tumours: causative agents or opportunistic inhabitants? Infect Agent Cancer. 2013;8:11.

52. Justiz-Vaillant A, Gardiner L, Mohammed M, et al. Narrative literature review on risk factors involved in breast cancer, brain cancer, colon rectal cancer, gynecological malignancy, lung cancer, and prostate cancer. 2021.

53. Urbaniak C, Cummins J, Brackstone M, et al. Microbiota of human breast tissue. Appl Environ Microbiol. 2014;80:3007-14.

54. Lehouritis P, Cummins J, Stanton M, et al. Local bacteria affect the efficacy of chemotherapeutic drugs. Sci Rep. 2015;5:14554.

55. Dohlman AB, Arguijo Mendoza D, Ding S, et al. The cancer microbiome atlas: a pan-cancer comparative analysis to distinguish tissue-resident microbiota from contaminants. Cell Host Microbe. 2021;29:281-98.e5.

56. Gerasimova Y, Ali H, Nadeem U. Challenges for pathologists in implementing clinical microbiome diagnostic testing. J Pathol Clin Res. 2024;10:e70002.

57. Walker SP, Tangney M, Claesson MJ. Sequence-based characterization of intratumoral bacteria - a guide to best practice. Front Oncol. 2020;10:179.

58. Massier L, Musat N, Stumvoll M, Tremaroli V, Chakaroun R, Kovacs P. Tissue-resident bacteria in metabolic diseases: emerging evidence and challenges. Nat Metab. 2024;6:1209-24.

59. Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome. 2018;6:226.

60. Bueso Y, Walker SP, Hogan G, Claesson MJ, Tangney M. Protoblock - a biological standard for formalin fixed samples. Microbiome. 2020;8:122.

61. Bueso Y, Walker SP, Tangney M. Characterization of FFPE-induced bacterial DNA damage and development of a repair method. Biol Methods Protoc. 2020;5:bpaa015.

62. Walker SP, Barrett M, Hogan G, Flores Bueso Y, Claesson MJ, Tangney M. Non-specific amplification of human DNA is a major challenge for 16S rRNA gene sequence analysis. Sci Rep 2020;10:16356.

63. Hogan G, Eckenberger J, Narayanen N, et al. Biopsy bacterial signature can predict patient tissue malignancy. Sci Rep. 2021;11:18535.

64. Mascitti M, Togni L, Troiano G, et al. Beyond head and neck cancer: the relationship between oral microbiota and tumour development in distant organs. Front Cell Infect Microbiol. 2019;9:232.

65. Xuan C, Shamonki JM, Chung A, et al. Microbial dysbiosis is associated with human breast cancer. PLoS One. 2014;9:e83744.

66. Wen L, Mu W, Lu H, et al. Porphyromonas gingivalis promotes oral squamous cell carcinoma progression in an immune microenvironment. J Dent Res. 2020;99:666-75.

67. Chen XX, Qiu D, Wang Y, et al. Acetate-producing bacterium Paenibacillus odorifer hampers lung cancer growth in lower respiratory tract: an in vitro study. Microbiol Spectr. 2024;12:e0071924.

68. Fang X, Tong W, Wu S, Zhu Z, Zhu J. The role of intratumoral microorganisms in the progression and immunotherapeutic efficacy of head and neck cancer. Oncologie. 2024;26:349-60.

69. Sanegre S, Lucantoni F, Burgos-Panadero R, de La Cruz-Merino L, Noguera R, Álvaro Naranjo T. Integrating the tumor microenvironment into cancer therapy. Cancers. 2020;12:1677.

70. Wu Z, Ma Q, Guo Y, You F. The role of Fusobacterium nucleatum in colorectal cancer cell proliferation and migration. Cancers. 2022;14:5350.

71. Yang Y, Qiu YT, Li WK, et al. Multi-Omics analysis elucidates tumor microenvironment and intratumor microbes of angiogenesis subtypes in colon cancer. World J Gastrointest Oncol. 2024;16:3169-92.

72. Yang X, Guo Y, Chen C, et al. Interaction between intestinal microbiota and tumour immunity in the tumour microenvironment. Immunology. 2021;164:476-93.

73. Crowther M, Brown NJ, Bishop ET, Lewis CE. Microenvironmental influence on macrophage regulation of angiogenesis in wounds and malignant tumors. J Leukoc Biol. 2001;70:478-90.

74. Dora D, Szőcs E, Soós Á, et al. From bench to bedside: an interdisciplinary journey through the gut-lung axis with insights into lung cancer and immunotherapy. Front Immunol. 2024;15:1434804.

75. Wang W, Ou Z, Huang X, et al. Microbiota and glioma: a new perspective from association to clinical translation. Gut Microbes. 2024;16:2394166.

76. Yan J, Yang L, Ren Q, et al. Gut microbiota as a biomarker and modulator of anti-tumor immunotherapy outcomes. Front Immunol. 2024;15:1471273.

77. Usyk M, Pandey A, Hayes RB, et al. Bacteroides vulgatus and Bacteroides dorei predict immune-related adverse events in immune checkpoint blockade treatment of metastatic melanoma. Genome Med. 2021;13:160.

78. Alexander JL, Wilson ID, Teare J, Marchesi JR, Nicholson JK, Kinross JM. Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat Rev Gastroenterol Hepatol. 2017;14:356-65.

79. Baruch EN, Youngster I, Ben-Betzalel G, et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science. 2021;371:602-9.

80. Griffin ME, Espinosa J, Becker JL, et al. Enterococcus peptidoglycan remodeling promotes checkpoint inhibitor cancer immunotherapy. Science. 2021;373:1040-6.

81. Dai Y, Zhong F, Liu W, Song Q, Hu W. Mycoplasma hyorhinis infection promotes tyrosine kinase inhibitor (TKI) resistance in lung adenocarcinoma patients. J Cancer Res Clin Oncol. 2021;147:1379-88.

82. Voorde J, Vervaeke P, Liekens S, Balzarini J. Mycoplasma hyorhinis-encoded cytidine deaminase efficiently inactivates cytosine-based anticancer drugs. FEBS Open Bio. 2015;5:634-9.

83. Souza RO, Miranda VC, Quintanilha MF, et al. Evaluation of the treatment with Akkermansia muciniphila BAA-835 of chemotherapy-induced mucositis in mice. Probiotics Antimicrob Proteins. 2024;16:275-92.

84. Mi H, Dong Y, Zhang B, et al. Bifidobacterium infantis ameliorates chemotherapy-induced intestinal mucositis via regulating T cell immunity in colorectal cancer rats. Cell Physiol Biochem. 2017;42:2330-41.

85. Yin B, Wang X, Yuan F, Li Y, Lu P. Research progress on the effect of gut and tumor microbiota on antitumor efficacy and adverse effects of chemotherapy drugs. Front Microbiol. 2022;13:899111.

86. Lehouritis P, Stanton M, McCarthy FO, Jeavons M, Tangney M. Activation of multiple chemotherapeutic prodrugs by the natural enzymolome of tumour-localised probiotic bacteria. J Control Release. 2016;222:9-17.

87. Dharmaraja AT. Role of reactive oxygen species (ROS) in therapeutics and drug resistance in cancer and bacteria. J Med Chem. 2017;60:3221-40.

88. Wei L, Wen XS, Xian CJ. Chemotherapy-induced intestinal microbiota dysbiosis impairs mucosal homeostasis by modulating Toll-like receptor signaling pathways. Int J Mol Sci. 2021;22:9474.

89. Son MY, Cho HS. Anticancer effects of gut microbiota-derived short-chain fatty acids in cancers. J Microbiol Biotechnol. 2023;33:849-56.

90. Gasaly N, Hermoso MA, Gotteland M. Butyrate and the fine-tuning of colonic homeostasis: implication for inflammatory bowel diseases. Int J Mol Sci. 2021;22:3061.

91. Al-Qadami GH, Secombe KR, Subramaniam CB, Wardill HR, Bowen JM. Gut microbiota-derived short-chain fatty acids: impact on cancer treatment response and toxicities. Microorganisms. 2022;10:2048.

92. Gong S, Feng Y, Zeng Y, et al. Gut microbiota accelerates cisplatin-induced acute liver injury associated with robust inflammation and oxidative stress in mice. J Transl Med. 2021;19:147.

93. Jin S, Guan T, Wang S, et al. Dioscin alleviates cisplatin-induced mucositis in rats by modulating gut microbiota, enhancing intestinal barrier function and attenuating TLR4/NF-κB signaling cascade. Int J Mol Sci. 2022;23:4431.

94. Wu CH, Ko JL, Liao JM, et al. D-methionine alleviates cisplatin-induced mucositis by restoring the gut microbiota structure and improving intestinal inflammation. Ther Adv Med Oncol. 2019;11:1758835918821021.

95. Gui QF, Lu HF, Zhang CX, Xu ZR, Yang YH. Well-balanced commensal microbiota contributes to anti-cancer response in a lung cancer mouse model. Genet Mol Res. 2015;14:5642-51.

96. Liu Y, Pei Z, Pan T, Wang H, Chen W, Lu W. Indole metabolites and colorectal cancer: gut microbial tryptophan metabolism, host gut microbiome biomarkers, and potential intervention mechanisms. Microbiol Res. 2023;272:127392.

97. Liu Y, Lau HC, Yu J. Microbial metabolites in colorectal tumorigenesis and cancer therapy. Gut Microbes. 2023;15:2203968.

98. Voelcker G. The mechanism of action of cyclophosphamide and its consequences for the development of a new generation of oxazaphosphorine cytostatics. Sci Pharm. 2020;88:42.

99. Mañez R, Blanco FJ, Díaz I, et al. Removal of bowel aerobic gram-negative bacteria is more effective than immunosuppression with cyclophosphamide and steroids to decrease natural alpha-galactosyl IgG antibodies. Xenotransplantation. 2001;8:15-23.

100. Jung IS, Jeon MG, Oh DS, et al. Micronized, heat-treated Lactobacillus plantarum LM1004 alleviates cyclophosphamide-induced immune suppression. J Med Food. 2019;22:896-906.

101. Pereira MA, Dias AR, Ramos MFKP, et al. Gastric cancer with microsatellite instability displays increased thymidylate synthase expression. J Surg Oncol. 2022;126:116-24.

102. Ciobanu L, Tefas C, Oancea DM, et al. Effect of Lactobacillus plantarum ACTT 8014 on 5-fluorouracil induced intestinal mucositis in Wistar rats. Exp Ther Med. 2020;20:209.

103. Yuan L, Zhang S, Li H, et al. The influence of gut microbiota dysbiosis to the efficacy of 5-fluorouracil treatment on colorectal cancer. Biomed Pharmacother. 2018;108:184-93.

104. Paroha S, Verma J, Dubey RD, et al. Recent advances and prospects in gemcitabine drug delivery systems. Int J Pharm. 2021;592:120043.

105. Geller LT, Barzily-Rokni M, Danino T, et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science. 2017;357:1156-60.

106. Gori S, Inno A, Belluomini L, et al. Gut microbiota and cancer: how gut microbiota modulates activity, efficacy and toxicity of antitumoral therapy. Crit Rev Oncol Hematol. 2019;143:139-47.

107. Iosifidou N, Anagnostopoulou E, Botou M, Kalfa E, Tatsaki E, Frillingos S. Elucidation of the gemcitabine transporters of escherichia coli K-12 and gamma-proteobacteria linked to gemcitabine-related chemoresistance. Int J Mol Sci. 2024;25:7012.

108. Cruz MS, Tintelnot J, Gagliani N. Roles of microbiota in pancreatic cancer development and treatment. Gut Microbes. 2024;16:2320280.

109. Wang J, Xu J, Yang S, et al. SN-38, an active metabolite of irinotecan, inhibits transcription of nuclear factor erythroid 2-related factor 2 and enhances drug sensitivity of colorectal cancer cells. Mol Carcinog. 2024;63:742-56.

110. Mahdy MS, Azmy AF, Dishisha T, et al. Irinotecan-gut microbiota interactions and the capability of probiotics to mitigate Irinotecan-associated toxicity. BMC Microbiol. 2023;23:53.

111. Okunaka M, Kano D, Matsui R, Kawasaki T, Uesawa Y. Evaluation of the expression profile of irinotecan-induced diarrhea in patients with colorectal cancer. Pharmaceuticals. 2021;14:377.

112. Mego M, Danis R, Chovanec J, et al. Randomized double-blind, placebo-controlled multicenter phase III study of prevention of irinotecan-induced diarrhea by a probiotic mixture containing Bifidobacterium BB-12® Lactobacillus rhamnosus LGG® in colorectal cancer patients. Front Oncol. 2023;13:1168654.

113. Liu C, Yang M, Zhang D, Chen M, Zhu D. Clinical cancer immunotherapy: current progress and prospects. Front Immunol. 2022;13:961805.

114. Miller PL, Carson TL. Mechanisms and microbial influences on CTLA-4 and PD-1-based immunotherapy in the treatment of cancer: a narrative review. Gut Pathog. 2020;12:43.

115. Desilets A, Elkrief A, Routy B. The link between the gut microbiome and response to immune checkpoint inhibitors in renal cell carcinoma. Eur Urol. 2021;79:1-2.

116. Shui L, Yang X, Li J, Yi C, Sun Q, Zhu H. Gut microbiome as a potential factor for modulating resistance to cancer immunotherapy. Front Immunol. 2019;10:2989.

117. Davar D, Dzutsev AK, McCulloch JA, et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science. 2021;371:595-602.

118. Routy B, Lenehan JG, Miller WH Jr, et al. Fecal microbiota transplantation plus anti-PD-1 immunotherapy in advanced melanoma: a phase I trial. Nat Med. 2023;29:2121-32.

119. Temraz S, Nassar F, Nasr R, Charafeddine M, Mukherji D, Shamseddine A. Gut microbiome: a promising biomarker for immunotherapy in colorectal cancer. Int J Mol Sci. 2019;20:4155.

120. Frankel AE, Coughlin LA, Kim J, et al. Metagenomic shotgun sequencing and unbiased metabolomic profiling identify specific human gut microbiota and metabolites associated with immune checkpoint therapy efficacy in melanoma patients. Neoplasia. 2017;19:848-55.

121. Routy B, Le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018;359:91-7.

122. Chaput N, Lepage P, Coutzac C, et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann Oncol. 2017;28:1368-79.

123. Matson V, Fessler J, Bao R, et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science. 2018;359:104-8.

124. Zhou G, Zhang N, Meng K, Pan F. Interaction between gut microbiota and immune checkpoint inhibitor-related colitis. Front Immunol. 2022;13:1001623.

125. Gao Y, Xu P, Sun D, et al. Faecalibacterium prausnitzii abrogates intestinal toxicity and promotes tumor immunity to increase the efficacy of dual CTLA4 and PD-1 checkpoint blockade. Cancer Res. 2023;83:3710-25.

126. Zhang LL, Xu JY, Xing Y, et al. Lactobacillus rhamnosus GG alleviates radiation-induced intestinal injury by modulating intestinal immunity and remodeling gut microbiota. Microbiol Res. 2024;286:127821.

127. Sittipo P, Pham HQ, Park CE, et al. Irradiation-induced intestinal damage is recovered by the indigenous gut bacteria Lactobacillus acidophilus. Front Cell Infect Microbiol. 2020;10:415.

128. Nada HG, Sudha T, Darwish NH, Mousa SA. Lactobacillus acidophilus and Bifidobacterium longum exhibit antiproliferation, anti-angiogenesis of gastric and bladder cancer: Impact of COX2 inhibition. PharmaNutrition. 2020;14:100219.

129. Segers C, Mysara M, Claesen J, et al. Intestinal mucositis precedes dysbiosis in a mouse model for pelvic irradiation. ISME Commun. 2021;1:24.

130. Armstrong JA, McCaffrey R. The effects of mucositis on quality of life in patients with head and neck cancer. Clin J Oncol Nurs. 2006;10:53-6.

131. Wang L, Liu X, Shu Z, et al. Quality of life and its association with radiation-induced oral mucositis in patients with nasopharyngeal carcinoma during radiotherapy: a prospective study. 2023.

132. Wang Y, Li J, Zhang H, et al. Probiotic Streptococcus salivarius K12 alleviates radiation-induced oral mucositis in mice. Front Immunol. 2021;12:684824.

133. Minervini G, Franco R, Marrapodi MM, et al. Probiotics in the treatment of radiotherapy-induced oral mucositis: systematic review with meta-analysis. Pharmaceuticals. 2023;16:654.

134. Ferrari V, Rescigno M. The intratumoral microbiota: friend or foe? Trends Cancer. 2023;9:472-9.

135. Zhang H, Fu L, Leiliang X, et al. Beyond the gut: the intratumoral microbiome’s influence on tumorigenesis and treatment response. Cancer Commun. 2024;44:1130-67.

136. Bi X, Wang J, Liu C. Intratumoral microbiota: metabolic influences and biomarker potential in gastrointestinal cancer. Biomolecules. 2024;14:917.

137. Gao Y, Shang Q, Li W, et al. Antibiotics for cancer treatment: a double-edged sword. J Cancer. 2020;11:5135-49.

138. Canale FP, Basso C, Antonini G, et al. Metabolic modulation of tumours with engineered bacteria for immunotherapy. Nature. 2021;598:662-6.

139. Zhang H, Fu L, Leiliang X, et al. Beyond the gut: the intratumoral microbiome’s influence on tumorigenesis and treatment response. Cancer Commun. 2024;44:1130-67.

140. Sankarapandian V, Venmathi Maran BA, Rajendran RL, et al. An update on the effectiveness of probiotics in the prevention and treatment of cancer. Life. 2022;12:59.

141. Morze J, Danielewicz A, Przybyłowicz K, Zeng H, Hoffmann G, Schwingshackl L. An updated systematic review and meta-analysis on adherence to mediterranean diet and risk of cancer. Eur J Nutr. 2021;60:1561-86.

142. Sinicrope FA. Increasing incidence of early-onset colorectal cancer. N Engl J Med. 2022;386:1547-58.

143. Tan JK, Macia L, Mackay CR. Dietary fiber and SCFAs in the regulation of mucosal immunity. J Allergy Clin Immunol. 2023;151:361-70.

144. Xu S, Lan H, Huang C, Ge X, Zhu J. Mechanisms and emerging strategies for irinotecan-induced diarrhea. Eur J Pharmacol. 2024;974:176614.

145. Wu M, Tian C, Zou Z, Jin M, Liu H. Gastrointestinal microbiota in gastric cancer: potential mechanisms and clinical applications-a literature review. Cancers. 2024;16:3547.

146. Lin XB, Farhangfar A, Valcheva R, et al. The role of intestinal microbiota in development of irinotecan toxicity and in toxicity reduction through dietary fibres in rats. PLoS One. 2014;9:e83644.

147. Blaževitš O, Di Tano M, Longo VD. Fasting and fasting mimicking diets in cancer prevention and therapy. Trends Cancer. 2023;9:212-22.

148. Vernieri C, Fucà G, Ligorio F, et al. Fasting-mimicking diet is safe and reshapes metabolism and antitumor immunity in patients with cancer. Cancer Discov. 2022;12:90-107.

149. Yassin MA, Ghasoub RS, Aldapt MB, et al. Effects of intermittent fasting on response to tyrosine kinase inhibitors (TKIs) in patients with chronic myeloid leukemia: an outcome of European LeukemiaNet Project. Cancer Control. 2021;28:10732748211009256.

150. Ogino S, Ugai T. The global epidemic of early-onset cancer: nature, nurture, or both? Ann Oncol. 2024;35:1071-3.

151. Zhou Z, Kleis L, Depetris-Chauvin A, et al. Beneficial microbiome and diet interplay in early-onset colorectal cancer. EMBO Mol Med. 2025;17:9-30.

152. Zhuang H, Jing N, Wang L, Jiang G, Liu Z. Jujube powder enhances cyclophosphamide efficiency against murine colon cancer by enriching CD8+ T cells while inhibiting eosinophilia. Nutrients. 2021;13:2700.

153. Zhang M, Cui S, Mao B, et al. Ellagic acid and intestinal microflora metabolite urolithin A: a review on its sources, metabolic distribution, health benefits, and biotransformation. Crit Rev Food Sci Nutr. 2023;63:6900-22.

154. Reid G. Probiotics: definition, scope and mechanisms of action. Best Pract Res Clin Gastroenterol. 2016;30:17-25.

155. Kennedy JM, De Silva A, Walton GE, Gibson GR. A review on the use of prebiotics in ulcerative colitis. Trends Microbiol. 2024;32:507-15.

156. Agah S, Alizadeh AM, Mosavi M, et al. More protection of Lactobacillus acidophilus than Bifidobacterium bifidum probiotics on azoxymethane-induced mouse colon cancer. Probiotics Antimicrob Proteins. 2019;11:857-64.

157. Heydari Z, Rahaie M, Alizadeh AM, Agah S, Khalighfard S, Bahmani S. Effects of Lactobacillus acidophilus and Bifidobacterium bifidum probiotics on the expression of microRNAs 135b, 26b, 18a and 155, and their involving genes in mice colon cancer. Probiotics Antimicrob Proteins. 2019;11:1155-62.

158. Ding M, Zheng Y, Liu F, et al. Lactation time influences the composition of Bifidobacterium and Lactobacillus at species level in human breast milk. Benef Microbes. 2022;13:319-30.

159. Lee JS, Paek NS, Kwon OS, Hahm KB. Anti-inflammatory actions of probiotics through activating suppressor of cytokine signaling (SOCS) expression and signaling in Helicobacter pylori infection: a novel mechanism. J Gastroenterol Hepatol. 2010;25:194-202.

160. Liu L, Shah K. The potential of the gut microbiome to reshape the cancer therapy paradigm: a review. JAMA Oncol. 2022;8:1059-67.

161. Sampsell K, Wang W, Ohland C, et al. Exercise and prebiotic fiber provide gut microbiota-driven benefit in a survivor to germ-free mouse translational model of breast cancer. Cancers. 2022;14:2722.

162. Dahl SM, Rolfe V, Walton GE, Gibson GR. Gut microbial modulation by culinary herbs and spices. Food Chem. 2023;409:135286.

163. Mehta JP, Ayakar S, Singhal RS. The potential of paraprobiotics and postbiotics to modulate the immune system: a review. Microbiol Res. 2023;275:127449.

164. Tkach S, Dorofeyev A, Kuzenko I, Boyko N, Falalyeyeva T, Kobyliak N. Fecal microbiota transplantation in diseases not associated with Clostridium difficile: current status and future therapeutic option. In: Microbiome in 3P Medicine Strategies. Springer; 2023. pp. 275-308.

165. Benech N, Legendre P, Radoszycki L, Varriale P, Sokol H. Patient knowledge of gut microbiota and acceptability of fecal microbiota transplantation in various diseases. Neurogastroenterol Motil. 2022;34:e14320.

166. Papastergiou V, Georgopoulos SD, Karatapanis S. Treatment of Helicobacter pylori infection: meeting the challenge of antimicrobial resistance. World J Gastroenterol. 2014;20:9898-911.

167. Tshibangu-Kabamba E, Yamaoka Y. Helicobacter pylori infection and antibiotic resistance - from biology to clinical implications. Nat Rev Gastroenterol Hepatol. 2021;18:613-29.

168. Dincă AL, Meliț LE, Mărginean CO. Old and new aspects of H. pylori-associated inflammation and gastric cancer. Children. 2022;9:1083.

169. Oster P, Vaillant L, Riva E, et al. Helicobacter pylori infection has a detrimental impact on the efficacy of cancer immunotherapies. Gut. 2022;71:457-66.

170. Pagani IS, Poudel G, Wardill HR. A gut instinct on leukaemia: a new mechanistic hypothesis for microbiota-immune crosstalk in disease progression and relapse. Microorganisms. 2022;10:713.

171. Varga MG, Wang T, Cai H, et al. Helicobacter pylori blood biomarkers and gastric cancer survival in China. Cancer Epidemiol Biomarkers Prev. 2018;27:342-4.

172. Boubrik F, Belmouden A, El Kadmiri N. Potential non-invasive biomarkers of Helicobacter pylori-associated gastric cancer. J Gastrointest Cancer. 2022;53:1113-20.

173. Zhao H, Li D, Liu J, et al. Bifidobacterium breve predicts the efficacy of anti-PD-1 immunotherapy combined with chemotherapy in Chinese NSCLC patients. Cancer Med. 2023;12:6325-36.

174. Liu W, Ma F, Sun B, et al. Intestinal microbiome associated with immune-related adverse events for patients treated with anti-PD-1 inhibitors, a real-world study. Front Immunol. 2021;12:756872.

175. Chronopoulos A, Kalluri R. Emerging role of bacterial extracellular vesicles in cancer. Oncogene. 2020;39:6951-60.

176. Park JY, Kang CS, Seo HC, et al. Bacteria-derived extracellular vesicles in urine as a novel biomarker for gastric cancer: integration of liquid biopsy and metagenome analysis. Cancers. 2021;13:4687.

177. Bryzgunova OE, Zaripov MM, Skvortsova TE, et al. Comparative study of extracellular vesicles from the urine of healthy individuals and prostate cancer patients. PLoS One. 2016;11:e0157566.

178. Cooper RM, Wright JA, Ng JQ, et al. Engineered bacteria detect tumor DNA. Science. 2023;381:682-6.

179. Luo F, Wang X, Ye C, Sun H. Microbial biomarkers in liquid biopsy for cancer: an overview and future directions. Cancer Control. 2024;31:10732748241292019.

180. Morrissey D, O’Sullivan GC, Tangney M. Tumour targeting with systemically administered bacteria. Curr Gene Ther. 2010;10:3-14.

181. Saini G, Smith BP. Microbial mavericks: unleashing bacteria’s tumor-seeking superpowers in the fight against cancer. Appl Biol Chem J. 2023;4:113-7.

182. Lehouritis P, Hogan G, Tangney M. Designer bacteria as intratumoural enzyme biofactories. Adv Drug Deliv Rev. 2017;118:8-23.

183. Murphy C, Rettedal E, Lehouritis P, Devoy C, Tangney M. Intratumoural production of TNFα by bacteria mediates cancer therapy. PLoS One. 2017;12:e0180034.

184. Byrne WL, Tangney M. Bacteria as gene therapy vectors for cancer. In: Gene and cell therapy: therapeutic mechanisms and strategies. CRC Press; 2015. Available from: https://www.routledge.com/Gene-and-Cell-Therapy-Therapeutic-Mechanisms-and-Strategies-Fourth-Edition/SmythTempleton/p/book/9781466571990?srsltid=AfmBOorPTytVFRrTCxxv9gJArg_2-LWOw78Q61XmP1zNlMWb57lUieod. [Last accessed on 25 Feb 2025].

185. Gao P, Duan Z, Xu G, et al. Harnessing and mimicking bacterial features to combat cancer: from living entities to artificial mimicking systems. Adv Mater. 2024;36:e2405075.

186. Allemailem KS. Innovative approaches of engineering tumor-targeting bacteria with different therapeutic payloads to fight cancer: a smart strategy of disease management. Int J Nanomedicine. 2021;16:8159-84.

187. Bueso Y, Lehouritis P, Tangney M. In situ biomolecule production by bacteria; a synthetic biology approach to medicine. J Control Release. 2018;275:217-28.

188. Byrne WL, Murphy CT, Cronin M, Wirth T, Tangney M. Bacterial-mediated DNA delivery to tumour associated phagocytic cells. J Control Release. 2014;196:384-93.

189. Janku F, Zhang HH, Pezeshki A, et al. Intratumoral injection of Clostridium novyi-NT spores in patients with treatment-refractory advanced solid tumors. Clin Cancer Res. 2021;27:96-106.

190. Chowdhury S, Castro S, Coker C, Hinchliffe TE, Arpaia N, Danino T. Programmable bacteria induce durable tumor regression and systemic antitumor immunity. Nat Med. 2019;25:1057-63.

191. Wu L, Li L, Li S, et al. Macrophage-mediated tumor-targeted delivery of engineered Salmonella typhi murium VNP20009 in anti-PD1 therapy against melanoma. Acta Pharm Sin B. 2022;12:3952-71.

192. Cronin M, Le Boeuf F, Murphy C, et al. Bacterial-mediated knockdown of tumor resistance to an oncolytic virus enhances therapy. Mol Ther. 2014;22:1188-97.

193. Li Z, Wang Y, Liu J, et al. Chemically and biologically engineered bacteria-based delivery systems for emerging diagnosis and advanced therapy. Adv Mater. 2021;33:e2102580.

194. Tahmasebi H, Arjmand N, Monemi M, et al. From cure to crisis: understanding the evolution of antibiotic-resistant bacteria in human microbiota. Biomolecules. 2025;15:93.

Microbiome Research Reports
ISSN 2771-5965 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/