REFERENCES
1. Society of The Chinese Institute of Food Science A, Technology. Scientific consensus on probiotics (2020). J Chin Inst Food Sci Technol 2020;20:303-7.
2. Suez J, Zmora N, Segal E, Elinav E. The pros, cons, and many unknowns of probiotics. Nat Med 2019;25:716-29.
3. Chowdhury S, Castro S, Coker C, Hinchliffe TE, Arpaia N, Danino T. Programmable bacteria induce durable tumor regression and systemic antitumor immunity. Nat Med 2019;25:1057-63.
5. Gurbatri CR, Lia I, Vincent R, et al. Engineered probiotics for local tumor delivery of checkpoint blockade nanobodies. Sci Transl Med 2020;12:eaax0876.
6. Li M, Liu N, Zhu J, et al. Engineered probiotics with sustained release of interleukin-2 for the treatment of inflammatory bowel disease after oral delivery. Biomaterials 2024;309:122584.
7. Hu H, Luo J, Liu Y, et al. Improvement effect of a next-generation probiotic L. plantarum-pMG36e-GLP-1 on type 2 diabetes mellitus via the gut-pancreas-liver axis. Food Funct 2023;14:3179-95.
8. Fang X, Zhou X, Miao Y, Han Y, Wei J, Chen T. Therapeutic effect of GLP-1 engineered strain on mice model of Alzheimer’s disease and Parkinson’s disease. AMB Express 2020;10:80.
9. Gurbatri CR, Radford GA, Vrbanac L, et al. Engineering tumor-colonizing E. coli Nissle 1917 for detection and treatment of colorectal neoplasia. Nat Commun 2024;15:646.
10. Britton RA, Hoffmann DE, Khoruts A. Probiotics and the microbiome-how can we help patients make sense of probiotics? Gastroenterology 2021;160:614-23.
11. Yadav AK, Tyagi A, Kumar A, et al. Adhesion of Lactobacilli and their anti-infectivity potential. Crit Rev Food Sci Nutr 2017;57:2042-56.
12. Breukink E, Wiedemann I, van Kraaij C, Kuipers OP, Sahl HG, de Kruijff B. Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science 1999;286:2361-4.
13. Hols P, Ledesma-García L, Gabant P, Mignolet J. Mobilization of microbiota commensals and their bacteriocins for therapeutics. Trends Microbiol 2019;27:690-702.
14. Tiwari SK. Bacteriocin-producing probiotic lactic acid bacteria in controlling dysbiosis of the gut microbiota. Front Cell Infect Microbiol 2022;12:851140.
15. Bender MJ, McPherson AC, Phelps CM, et al. Dietary tryptophan metabolite released by intratumoral Lactobacillus reuteri facilitates immune checkpoint inhibitor treatment. Cell 2023;186:1846-62.e26.
16. Martin FP, Cominetti O, Berger B, et al. Metabolome-associated psychological comorbidities improvement in irritable bowel syndrome patients receiving a probiotic. Gut Microbes 2024;16:2347715.
17. Srivastava S, Basak U, Naghibi M, et al. A randomized double-blind, placebo-controlled trial to evaluate the safety and efficacy of live Bifidobacterium longum CECT 7347 (ES1) and heat-treated Bifidobacterium longum CECT 7347 (HT-ES1) in participants with diarrhea-predominant irritable bowel syndrome. Gut Microbes 2024;16:2338322.
18. Zhang Q, Li G, Zhao W, et al. Efficacy of Bifidobacterium animalis subsp. lactis BL-99 in the treatment of functional dyspepsia: a randomized placebo-controlled clinical trial. Nat Commun 2024;15:227.
19. Han Y, Zhou Y, Xu X, et al. Improvement of post-surgery constipation in patients with fractures by Lactobacillus rhamnosus JYLR-127: a single-blind randomized controlled trial. Nutrients 2024;16:1505.
20. Koyama S, Fujita H, Shimosato T, et al; Yokohama Cooperative Study Group for Hematology (YACHT). Septicemia from Lactobacillus rhamnosus GG, from a probiotic enriched yogurt, in a patient with autologous stem cell transplantation. Probiotics Antimicro Prot 2019;11:295-8.
21. Rossi F, Amadoro C, Gasperi M, Colavita G. Lactobacilli infection case reports in the last three years and safety implications. Nutrients 2022;14:1178.
22. Kassam Z, Dubois N, Ramakrishna B, et al. Donor screening for fecal microbiota transplantation. N Engl J Med 2019;381:2070-2.
23. Nasrollahzadeh A, Mokhtari S, Khomeiri M, Saris PEJ. Antifungal preservation of food by lactic acid bacteria. Foods 2022;11:395.
24. Zuo F, Zeng Z, Hammarström L, Marcotte H. Inducible plasmid self-destruction (IPSD) assisted genome engineering in lactobacilli and bifidobacteria. ACS Synth Biol 2019;8:1723-9.
25. Bober JR, Beisel CL, Nair NU. Synthetic biology approaches to engineer probiotics and members of the human microbiota for biomedical applications. Annu Rev Biomed Eng 2018;20:277-300.
26. Wu J, Xin Y, Kong J, Guo T. Genetic tools for the development of recombinant lactic acid bacteria. Microb Cell Fact 2021;20:118.
27. Seyedian SS, Nokhostin F, Malamir MD. A review of the diagnosis, prevention, and treatment methods of inflammatory bowel disease. J Med Life 2019;12:113-22.
28. Kaplan GG. The global burden of IBD: from 2015 to 2025. Nat Rev Gastroenterol Hepatol 2015;12:720-7.
29. Alipour M, Zaidi D, Valcheva R, et al. Mucosal barrier depletion and loss of bacterial diversity are primary abnormalities in paediatric ulcerative colitis. J Crohns Colitis 2016;10:462-71.
30. Danne C, Skerniskyte J, Marteyn B, Sokol H. Neutrophils: from IBD to the gut microbiota. Nat Rev Gastroenterol Hepatol 2024;21:184-97.
31. Smith PM, Howitt MR, Panikov N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013;341:569-73.
32. Lautenschläger C, Schmidt C, Fischer D, Stallmach A. Drug delivery strategies in the therapy of inflammatory bowel disease. Adv Drug Deliv Rev 2014;71:58-76.
33. Yasmin F, Najeeb H, Shaikh S, et al. Novel drug delivery systems for inflammatory bowel disease. World J Gastroenterol 2022;28:1922-33.
34. Steidler L, Hans W, Schotte L, et al. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 2000;289:1352-5.
35. Steidler L, Neirynck S, Huyghebaert N, et al. Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat Biotechnol 2003;21:785-9.
36. Braat H, Rottiers P, Hommes DW, et al. A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn’s disease. Clin Gastroenterol Hepatol 2006;4:754-9.
37. Jiang R, Yuan S, Zhou Y, et al. Strategies to overcome the challenges of low or no expression of heterologous proteins in Escherichia coli. Biotechnol Adv 2024;75:108417.
38. Plotkin JB, Kudla G. Synonymous but not the same: the causes and consequences of codon bias. Nat Rev Genet 2011;12:32-42.
39. Hanson ML, Hixon JA, Li W, et al. Oral delivery of IL-27 recombinant bacteria attenuates immune colitis in mice. Gastroenterology 2014;146:210-21.e13.
40. Zhou J, Li M, Chen Q, et al. Programmable probiotics modulate inflammation and gut microbiota for inflammatory bowel disease treatment after effective oral delivery. Nat Commun 2022;13:3432.
41. Chen H, Lei P, Ji H, et al. Escherichia coli Nissle 1917 ghosts alleviate inflammatory bowel disease in zebrafish. Life Sci 2023;329:121956.
42. Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012;490:55-60.
43. Zhou W, Sailani MR, Contrepois K, et al. Longitudinal multi-omics of host-microbe dynamics in prediabetes. Nature 2019;569:663-71.
45. Rittiphairoj T, Pongpirul K, Janchot K, Mueller NT, Li T. Probiotics contribute to glycemic control in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Adv Nutr 2021;12:722-34.
46. Wang Y, Dilidaxi D, Wu Y, Sailike J, Sun X, Nabi XH. Composite probiotics alleviate type 2 diabetes by regulating intestinal microbiota and inducing GLP-1 secretion in db/db mice. Biomed Pharmacother 2020;125:109914.
47. Holst JJ. Glucagonlike peptide 1: a newly discovered gastrointestinal hormone. Gastroenterology 1994;107:1848-55.
48. Sandoval DA, D’Alessio DA. Physiology of proglucagon peptides: role of glucagon and GLP-1 in health and disease. Physiol Rev 2015;95:513-48.
49. Grandl G, Novikoff A, Dimarchi R, Tschöp MH, Müller TD. Gut peptide agonism in the treatment of obesity and diabetes. Compr Physiol 2019;10:99-124.
50. Agarwal P, Khatri P, Billack B, Low WK, Shao J. Oral delivery of glucagon like peptide-1 by a recombinant Lactococcus lactis. Pharm Res 2014;31:3404-14.
51. Luo J, Zhang H, Lu J, Ma C, Chen T. Antidiabetic effect of an engineered bacterium Lactobacillus plantarum-pMG36e -GLP-1 in monkey model. Synth Syst Biotechnol 2021;6:272-82.
52. Wang L, Chen T, Wang H, et al. Engineered bacteria of MG1363-pMG36e-GLP-1 attenuated obesity-induced by high fat diet in mice. Front Cell Infect Microbiol 2021;11:595575.
53. Takiishi T, Korf H, Van Belle TL, et al. Reversal of autoimmune diabetes by restoration of antigen-specific tolerance using genetically modified Lactococcus lactis in mice. J Clin Invest 2012;122:1717-25.
54. Chavkin TA, Pham LD, Kostic A. E. coli Nissle 1917 modulates host glucose metabolism without directly acting on glucose. Sci Rep 2021;11:23230.
55. Bazi Z, Jalili M, Hekmatdoost A. The long term oral regulation of blood glucose in diabetic patients by using of Escherichia coli Nissle 1917 expressing CTB-IGF-1 hybrid protein. Med Hypotheses 2013;81:961-2.
56. Tu P, Ma Z, Wang H, et al. Expression of CTB-10×rolGLP-1 in E. coli and its therapeutic effect on type 2 diabetes. Curr Pharm Biotechnol 2015;16:564-72.
57. Qin Q, Chen Y, Li Y, et al. Intestinal microbiota play an important role in the treatment of type I diabetes in mice with BefA protein. Front Cell Infect Microbiol 2021;11:719542.
58. Wang H, Wei J, Hu H, et al. Oral administration of bacterial β cell expansion factor A (BefA) alleviates diabetes in mice with type 1 and type 2 diabetes. Oxid Med Cell Longev 2022;2022:9206039.
59. Blau N, Hennermann JB, Langenbeck U, Lichter-Konecki U. Diagnosis, classification, and genetics of phenylketonuria and tetrahydrobiopterin (BH4) deficiencies. Mol Genet Metab 2011;104 Suppl:S2-9.
60. Spronsen FJ, Blau N, Harding C, Burlina A, Longo N, Bosch AM. Phenylketonuria. Nat Rev Dis Primers 2021;7:36.
61. Lichter-Konecki U, Vockley J. Phenylketonuria: current treatments and future developments. Drugs 2019;79:495-500.
62. van Spronsen FJ, van Wegberg AM, Ahring K, et al. Key European guidelines for the diagnosis and management of patients with phenylketonuria. Lancet Diabetes Endocrinol 2017;5:743-56.
63. Martinez M, Harding CO, Schwank G, Thöny B. State-of-the-art 2023 on gene therapy for phenylketonuria. J Inherit Metab Dis 2024;47:80-92.
64. Kim W, Erlandsen H, Surendran S, et al. Trends in enzyme therapy for phenylketonuria. Mol Ther 2004;10:220-4.
65. Levy HL, Sarkissian CN, Scriver CR. Phenylalanine ammonia lyase (PAL): from discovery to enzyme substitution therapy for phenylketonuria. Mol Genet Metab 2018;124:223-9.
66. Durrer KE, Allen MS, Hunt von Herbing I. Genetically engineered probiotic for the treatment of phenylketonuria (PKU); assessment of a novel treatment in vitro and in the PAHenu2 mouse model of PKU. PLoS One 2017;12:e0176286.
67. Ramírez AM, Rodriguez-López A, Ardila A, et al. Production of human recombinant phenylalanine hydroxylase in Lactobacillus plantarum for gastrointestinal delivery. Eur J Pharm Sci 2017;109:48-55.
68. Phumkhachorn P, Rattanachaikunsopon P. A broad host range food-grade cloning vector for lactic acid bacteria. Biologia 2016;71:457-63.
69. Kaur T, Balgir PP, Kaur B. Correction to: construction of a shuttle expression vector for lactic acid bacteria. J Genet Eng Biotechnol 2020;18:38.
70. Platteeuw C, van Alen-Boerrigter I, van Schalkwijk S, de Vos WM. Food-grade cloning and expression system for Lactococcus lactis. Appl Environ Microbiol 1996;62:1008-13.
71. Kim JH, Mills DA. Improvement of a nisin-inducible expression vector for use in lactic acid bacteria. Plasmid 2007;58:275-83.
72. Chae JP, Pajarillo EA, Hwang IC, Kang DK. Construction of a Bile-responsive expression system in Lactobacillus plantarum. Food Sci Anim Resour 2019;39:13-22.
73. Guan C, Yuan Y, Ma Y, et al. Development of a novel expression system in lactic acid bacteria controlled by a broad-host-range promoter PsrfA. Microb Cell Fact 2022;21:23.
74. Isabella VM, Ha BN, Castillo MJ, et al. Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. Nat Biotechnol 2018;36:857-64.
75. Jiang Y, Sun B, Qian F, et al. Expression of phenylalanine ammonia lyase as an intracellularly free and extracellularly cell surface-immobilized enzyme on a gut microbe as a live biotherapeutic for phenylketonuria. Sci China Life Sci 2023;66:127-36.
76. Puurunen MK, Vockley J, Searle SL, et al. Safety and pharmacodynamics of an engineered E. coli Nissle for the treatment of phenylketonuria: a first-in-human phase 1/2a study. Nat Metab 2021;3:1125-32.
77. Adolfsen KJ, Callihan I, Monahan CE, et al. Improvement of a synthetic live bacterial therapeutic for phenylketonuria with biosensor-enabled enzyme engineering. Nat Commun 2021;12:6215.
78. Triassi AJ, Fields BD, Monahan CE, et al. Redesign of an Escherichia coli Nissle treatment for phenylketonuria using insulated genomic landing pads and genetic circuits to reduce burden. Cell Syst 2023;14:512-24.e12.
79. Heineman HS, Jensen WN, Cooper WM, Braude AI. Hodgkin’s disease and salmonella typhimurium infection. JAMA 1964;188:632-4.
80. Stritzker J, Weibel S, Hill PJ, Oelschlaeger TA, Goebel W, Szalay AA. Tumor-specific colonization, tissue distribution, and gene induction by probiotic Escherichia coli Nissle 1917 in live mice. Int J Med Microbiol 2007;297:151-62.
81. Toso JF, Gill VJ, Hwu P, et al. Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J Clin Oncol 2002;20:142-52.
82. Chondrou P, Karapetsas A, Kiousi DE, et al. Lactobacillus paracasei K5 displays adhesion, anti-proliferative activity and apoptotic effects in human colon cancer cells. Benef Microbes 2018;9:975-83.
83. Leschner S, Westphal K, Dietrich N, et al. Tumor invasion of Salmonella enterica serovar Typhimurium is accompanied by strong hemorrhage promoted by TNF-alpha. PLoS One 2009;4:e6692.
84. Kasinskas RW, Forbes NS. Salmonella typhimurium lacking ribose chemoreceptors localize in tumor quiescence and induce apoptosis. Cancer Res 2007;67:3201-9.
85. Kwon SY, Thi-Thu Ngo H, Son J, Hong Y, Min JJ. Exploiting bacteria for cancer immunotherapy. Nat Rev Clin Oncol 2024;21:569-89.
86. Saito S, Cao DY, Maekawa T, Tsuji NM, Okuno A. Lactococcus lactis subsp. cremoris C60 upregulates macrophage function by modifying metabolic preference in enhanced anti-tumor immunity. Cancers 2024;16:1928.
87. Herrero-Fresno A, Olsen JE. Salmonella Typhimurium metabolism affects virulence in the host - a mini-review. Food Microbiol 2018;71:98-110.
88. Low KB, Ittensohn M, Le T, et al. Lipid A mutant Salmonella with suppressed virulence and TNFalpha induction retain tumor-targeting in vivo. Nat Biotechnol 1999;17:37-41.
89. Clairmont C, Lee KC, Pike J, et al. Biodistribution and genetic stability of the novel antitumor agent VNP20009, a genetically modified strain of Salmonella typhimurium. J Infect Dis 2000;181:1996-2002.
90. Song M, Kim HJ, Kim EY, et al. ppGpp-dependent stationary phase induction of genes on Salmonella pathogenicity island 1. J Biol Chem 2004;279:34183-90.
91. Na HS, Kim HJ, Lee HC, Hong Y, Rhee JH, Choy HE. Immune response induced by Salmonella typhimurium defective in ppGpp synthesis. Vaccine 2006;24:2027-34.
92. Sieow BF, Wun KS, Yong WP, Hwang IY, Chang MW. Tweak to treat: reprograming bacteria for cancer treatment. Trends Cancer 2021;7:447-64.
93. Park SH, Zheng JH, Nguyen VH, et al. RGD peptide cell-surface display enhances the targeting and therapeutic efficacy of attenuated salmonella-mediated cancer therapy. Theranostics 2016;6:1672-82.
94. Massa PE, Paniccia A, Monegal A, de Marco A, Rescigno M. Salmonella engineered to express CD20-targeting antibodies and a drug-converting enzyme can eradicate human lymphomas. Blood 2013;122:705-14.
95. Wu D, Zhao Z, Liu H, et al. Escherichia coli Nissle 1917-driven microrobots for effective tumor targeted drug delivery and tumor regression. Acta Biomater 2023;169:477-88.
96. Zhu J, Ke Y, Liu Q, et al. Engineered Lactococcus lactis secreting Flt3L and OX40 ligand for in situ vaccination-based cancer immunotherapy. Nat Commun 2022;13:7466.
97. Zhou DX, Wang XH, Xu X, et al. Anti-tumor effects of engineered VNP20009-Abvec-Igκ-mPD-1 strain in melanoma mice via combining the oncolytic therapy and immunotherapy. Pharmaceutics 2022;14:2789.
98. Ciaćma K, Więckiewicz J, Kędracka-Krok S, et al. Secretion of tumoricidal human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) by recombinant Lactococcus lactis: optimization of in vitro synthesis conditions. Microb Cell Fact 2018;17:177.
99. Yoon W, Yoo Y, Chae YS, Kee SH, Kim BM. Therapeutic advantage of genetically engineered Salmonella typhimurium carrying short hairpin RNA against inhibin alpha subunit in cancer treatment. Ann Oncol 2018;29:2010-7.
100. Zheng JH, Nguyen VH, Jiang SN, et al. Two-step enhanced cancer immunotherapy with engineered Salmonella typhimurium secreting heterologous flagellin. Sci Transl Med 2017;9:eaak9537.
101. Tan W, Duong MT, Zuo C, et al. Targeting of pancreatic cancer cells and stromal cells using engineered oncolytic Salmonella typhimurium. Mol Ther 2022;30:662-71.
102. Satoh Y, Kotani H, Iida Y, Taniura T, Notsu Y, Harada M. Supplementation of l-arginine boosts the therapeutic efficacy of anticancer chemoimmunotherapy. Cancer Sci 2020;111:2248-58.
103. Canale FP, Basso C, Antonini G, et al. Metabolic modulation of tumours with engineered bacteria for immunotherapy. Nature 2021;598:662-6.
104. Reich N, Hölscher C. The neuroprotective effects of glucagon-like peptide 1 in Alzheimer’s and Parkinson’s disease: an in-depth review. Front Neurosci 2022;16:970925.
105. Diz-Chaves Y, Mastoor Z, Spuch C, González-Matías LC, Mallo F. Anti-inflammatory effects of GLP-1 receptor activation in the brain in neurodegenerative diseases. Int J Mol Sci 2022;23:9583.
106. Nowell J, Blunt E, Edison P. Incretin and insulin signaling as novel therapeutic targets for Alzheimer’s and Parkinson’s disease. Mol Psychiatry 2023;28:217-29.
107. Batista AF, Bodart-Santos V, De Felice FG, Ferreira ST. Neuroprotective actions of glucagon-like peptide-1 (GLP-1) analogues in Alzheimer’s and Parkinson’s diseases. CNS Drugs 2019;33:209-23.
108. Wang RF, Xue GF, Hölscher C, et al. Post-treatment with the GLP-1 analogue liraglutide alleviate chronic inflammation and mitochondrial stress induced by Status epilepticus. Epilepsy Res 2018;142:45-52.
109. Loh JS, Mak WQ, Tan LKS, et al. Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct Target Ther 2024;9:37.
110. Chen T, Tian P, Huang Z, et al. Engineered commensal bacteria prevent systemic inflammation-induced memory impairment and amyloidogenesis via producing GLP-1. Appl Microbiol Biotechnol 2018;102:7565-75.
111. Yue M, Wei J, Chen W, Hong D, Chen T, Fang X. Neurotrophic role of the next-generation probiotic strain L. lactis MG1363-pMG36e-GLP-1 on Parkinson’s disease via inhibiting ferroptosis. Nutrients 2022;14:4886.
112. Fang X, Tian P, Zhao X, Jiang C, Chen T. Neuroprotective effects of an engineered commensal bacterium in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine Parkinson disease mouse model via producing glucagon-like peptide-1. J Neurochem 2019;150:441-52.
113. Mukherjee S, Bassler BL. Bacterial quorum sensing in complex and dynamically changing environments. Nat Rev Microbiol 2019;17:371-82.
114. Gupta RK, Luong TT, Lee CY. RNAIII of the Staphylococcus aureus agr system activates global regulator MgrA by stabilizing mRNA. Proc Natl Acad Sci U S A 2015;112:14036-41.
115. Lubkowicz D, Ho CL, Hwang IY, Yew WS, Lee YS, Chang MW. Reprogramming probiotic Lactobacillus reuteri as a biosensor for staphylococcus aureus derived AIP-I detection. ACS Synth Biol 2018;7:1229-37.
116. Li H, Jia M, Qi Q, Wang Q. Engineered probiotic Lactobacillus plantarum WCSF I for monitoring and treatment of Staphylococcus aureus infection. Microbiol Spectr 2023;11:e0182923.
117. Mao N, Cubillos-Ruiz A, Cameron DE, Collins JJ. Probiotic strains detect and suppress cholera in mice. Sci Transl Med 2018;10:eaao2586.
118. Borrero J, Chen Y, Dunny GM, Kaznessis YN. Modified lactic acid bacteria detect and inhibit multiresistant enterococci. ACS Synth Biol 2015;4:299-306.
120. Mimee M, Nadeau P, Hayward A, et al. An ingestible bacterial-electronic system to monitor gastrointestinal health. Science 2018;360:915-8.
121. Zou ZP, Du Y, Fang TT, Zhou Y, Ye BC. Biomarker-responsive engineered probiotic diagnoses, records, and ameliorates inflammatory bowel disease in mice. Cell Host Microbe 2023;31:199-212.e5.
122. Xia JY, Hepler C, Tran P, Waldeck NJ, Bass J, Prindle A. Engineered calprotectin-sensing probiotics for IBD surveillance in humans. Proc Natl Acad Sci U S A 2023;120:e2221121120.
123. Meng T, Ma W, Fan M, Tang W, Duan X. Enhancing the contrast of tumor imaging for image-guided surgery using a tumor-targeting probiotic with the continuous expression of a biomarker. Anal Chem 2022;94:10109-17.
124. Danino T, Prindle A, Kwong GA, et al. Programmable probiotics for detection of cancer in urine. Sci Transl Med 2015;7:289ra84.
125. Tanniche I, Behkam B. Engineered live bacteria as disease detection and diagnosis tools. J Biol Eng 2023;17:65.
126. Perdigon G, Alvarez S, Nader DE Macias ME, Roux ME, de Ruiz Holgado AP. The oral administration of lactic acid bacteria increase the mucosal intestinal immunity in response to enteropathogens. J Food Prot 1990;53:404-10.
127. Hanniffy SB, Carter AT, Hitchin E, Wells JM. Mucosal delivery of a pneumococcal vaccine using Lactococcus lactis affords protection against respiratory infection. J Infect Dis 2007;195:185-93.
128. Lee JS, Poo H, Han DP, et al. Mucosal immunization with surface-displayed severe acute respiratory syndrome coronavirus spike protein on Lactobacillus casei induces neutralizing antibodies in mice. J Virol 2006;80:4079-87.
129. Xu YXY, Zhang XZ, Weng MM, et al. Oral immunization of mice with recombinant Lactobacillus plantarum expressing a Trichinella spiralis galectin induces an immune protection against larval challenge. Parasit Vectors 2022;15:475.
130. Zhang R, Peng X, Duan G, et al. An engineered Lactococcus lactis strain exerts significant immune responses through efficient expression and delivery of Helicobacter pylori Lpp20 antigen. Biotechnol Lett 2016;38:2169-75.
131. Zhang F, Ni L, Zhang Z, et al. Recombinant L. lactis vaccine LL-plSAM-WAE targeting four virulence factors provides mucosal immunity against H. pylori infection. Microb Cell Fact 2024;23:61.
132. Huynh DT, Chathuranga WAG, Chathuranga K, Lee JS, Kim CJ. Mucosal administration of Lactobacillus casei surface-displayed HA1 induces protective immune responses against avian influenza A virus in mice. J Microbiol Biotechnol 2024;34:735-45.
133. Sarnelli G, Del Re A, Palenca I, et al. Intranasal administration of Escherichia coli Nissle expressing the spike protein of SARS-CoV-2 induces long-term immunization and prevents spike protein-mediated lung injury in mice. Biomed Pharmacother 2024;174:116441.
134. Zhao Z, Wang H, Zhang D, et al. Oral vaccination with recombinant Lactobacillus casei expressing Aeromonas hydrophila Aha1 against A. hydrophila infections in common carps. Virulence 2022;13:794-807.
135. Zhang Y, Yang L, Zhang J, et al. Oral or intranasal immunization with recombinant Lactobacillus plantarum displaying head domain of Swine Influenza A virus hemagglutinin protects mice from H1N1 virus. Microb Cell Fact 2022;21:185.
136. Qiao N, Du G, Zhong X, Sun X. Recombinant lactic acid bacteria as promising vectors for mucosal vaccination. Exploration 2021;1:20210026.
137. Guo S, Yan W, McDonough SP, et al. The recombinant Lactococcus lactis oral vaccine induces protection against C. difficile spore challenge in a mouse model. Vaccine 2015;33:1586-95.
138. Sarate PJ, Heinl S, Poiret S, et al. E. coli Nissle 1917 is a safe mucosal delivery vector for a birch-grass pollen chimera to prevent allergic poly-sensitization. Mucosal Immunol 2019;12:132-44.
139. Rao S, Hu S, McHugh L, et al. Toward a live microbial microbicide for HIV: commensal bacteria secreting an HIV fusion inhibitor peptide. Proc Natl Acad Sci U S A 2005;102:11993-8.
140. Huang L, Tang W, He L, et al. Engineered probiotic Escherichia coli elicits immediate and long-term protection against influenza A virus in mice. Nat Commun 2024;15:6802.
141. Mohseni AH, Razavilar V, Keyvani H, Razavi MR, Khavari-Nejad RA. Oral immunization with recombinant Lactococcus lactis NZ9000 expressing human papillomavirus type 16 E7 antigen and evaluation of its immune effects in female C57BL/6 mice. J Med Virol 2019;91:296-307.
142. Li Y, Li X, Liu H, Zhuang S, Yang J, Zhang F. Intranasal immunization with recombinant Lactococci carrying human papillomavirus E7 protein and mouse interleukin-12 DNA induces E7-specific antitumor effects in C57BL/6 mice. Oncol Lett 2014;7:576-82.
143. Benz I, Schmidt MA. Cloning and expression of an adhesin (AIDA-I) involved in diffuse adherence of enteropathogenic Escherichia coli. Infect Immun 1989;57:1506-11.
144. Buddenborg C, Daudel D, Liebrecht S, Greune L, Humberg V, Schmidt MA. Development of a tripartite vector system for live oral immunization using a gram-negative probiotic carrier. Int J Med Microbiol 2008;298:105-14.
145. Sarnelli G, Del Re A, Pesce M, et al. Oral Immunization with Escherichia coli Nissle 1917 expressing SARS-CoV-2 spike protein induces mucosal and systemic antibody responses in mice. Biomolecules 2023;13:569.
146. Remer KA, Bartrow M, Roeger B, Moll H, Sonnenborn U, Oelschlaeger TA. Split immune response after oral vaccination of mice with recombinant Escherichia coli Nissle 1917 expressing fimbrial adhesin K88. Int J Med Microbiol 2009;299:467-78.
147. Wen LJ, Hou XL, Wang GH, et al. Immunization with recombinant Lactobacillus casei strains producing K99, K88 fimbrial protein protects mice against enterotoxigenic Escherichia coli. Vaccine 2012;30:3339-49.
148. Huang Y, Lin X, Yu S, Chen R, Chen W. Intestinal engineered probiotics as living therapeutics: chassis selection, colonization enhancement, gene circuit design, and biocontainment. ACS Synth Biol 2022;11:3134-53.
149. Li MC, He SH. IL-10 and its related cytokines for treatment of inflammatory bowel disease. World J Gastroenterol 2004;10:620-5.
150. Yang M, Gu Y, Li L, et al. Bile acid-gut microbiota axis in inflammatory bowel disease: from bench to bedside. Nutrients 2021;13:3143.
151. Wang Y, Shi Y, Peng X, et al. Biochemotaxis-oriented engineering bacteria expressing GLP-1 enhance diabetes therapy by regulating the balance of immune. Adv Healthc Mater 2024;13:e2303958.
152. Hausmann O, Daha M, Longo N, et al. Pegvaliase: Immunological profile and recommendations for the clinical management of hypersensitivity reactions in patients with phenylketonuria treated with this enzyme substitution therapy. Mol Genet Metab 2019;128:84-91.
153. Mater DD, Langella P, Corthier G, Flores MJ. A probiotic Lactobacillus strain can acquire vancomycin resistance during digestive transit in mice. J Mol Microbiol Biotechnol 2008;14:123-7.
154. Anisimova E, Gorokhova I, Karimullina G, Yarullina D. Alarming antibiotic resistance of Lactobacilli isolated from probiotic preparations and dietary supplements. Antibiotics 2022;11:1557.
155. Castro CP, Drumond MM, Batista VL, Nunes A, Mancha-Agresti P, Azevedo V. Vector development timeline for mucosal vaccination and treatment of disease using Lactococcus lactis and design approaches of next generation food grade plasmids. Front Microbiol 2018;9:1805.
156. Charbonneau MR, Isabella VM, Li N, Kurtz CB. Developing a new class of engineered live bacterial therapeutics to treat human diseases. Nat Commun 2020;11:1738.
157. Yan X, Liu X, Zhao C, Chen GQ. Applications of synthetic biology in medical and pharmaceutical fields. Signal Transduct Target Ther 2023;8:199.
158. Gibson DG, Glass JI, Lartigue C, et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science 2010;329:52-6.
159. Sung BH, Choe D, Kim SC, Cho BK. Construction of a minimal genome as a chassis for synthetic biology. Essays Biochem 2016;60:337-46.
160. Calero P, Nikel PI. Chasing bacterial chassis for metabolic engineering: a perspective review from classical to non-traditional microorganisms. Microb Biotechnol 2019;12:98-124.
161. Zhu D, Fu Y, Liu F, Xu H, Saris PE, Qiao M. Enhanced heterologous protein productivity by genome reduction in Lactococcus lactis NZ9000. Microb Cell Fact 2017;16:1.
162. Hille F, Richter H, Wong SP, Bratovič M, Ressel S, Charpentier E. The biology of CRISPR-Cas: backward and forward. Cell 2018;172:1239-59.
163. Hryhorowicz M, Lipiński D, Zeyland J, Słomski R. CRISPR/Cas9 immune system as a tool for genome engineering. Arch Immunol Ther Exp 2017;65:233-40.
164. Xiao Y, Ng S, Nam KH, Ke A. How type II CRISPR-Cas establish immunity through Cas1-Cas2-mediated spacer integration. Nature 2017;550:137-41.
165. Kleinstiver BP, Prew MS, Tsai SQ, et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 2015;523:481-5.
166. Kim H, Kim JS. A guide to genome engineering with programmable nucleases. Nat Rev Genet 2014;15:321-34.
167. Gaj T, Gersbach CA, Barbas CF 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 2013;31:397-405.
168. Ren J, Lee J, Na D. Recent advances in genetic engineering tools based on synthetic biology. J Microbiol 2020;58:1-10.
169. Gaudelli NM, Komor AC, Rees HA, et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 2017;551:464-71.
170. Anzalone AV, Randolph PB, Davis JR, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 2019;576:149-57.
172. Crawley AB, Henriksen ED, Stout E, Brandt K, Barrangou R. Characterizing the activity of abundant, diverse and active CRISPR-Cas systems in lactobacilli. Sci Rep 2018;8:11544.
173. Pan M, Morovic W, Hidalgo-Cantabrana C, et al. Genomic and epigenetic landscapes drive CRISPR-based genome editing in Bifidobacterium. Proc Natl Acad Sci U S A 2022;119:e2205068119.
174. Song X, Huang H, Xiong Z, Ai L, Yang S. CRISPR-Cas9D10A Nickase-assisted genome editing in Lactobacillus casei. Appl Environ Microbiol 2017;83:e01259-17.
175. Myrbråten IS, Wiull K, Salehian Z, et al. CRISPR interference for rapid knockdown of essential cell cycle genes in Lactobacillus plantarum. mSphere 2019;4:e00007-19.
176. Hidalgo-Cantabrana C, Goh YJ, Pan M, Sanozky-Dawes R, Barrangou R. Genome editing using the endogenous type I CRISPR-Cas system in Lactobacillus crispatus. Proc Natl Acad Sci U S A 2019;116:15774-83.
177. Han X, Chang L, Chen H, et al. Harnessing the endogenous Type I-C CRISPR-Cas system for genome editing in Bifidobacterium breve. Appl Environ Microbiol 2024;90:e0207423.
178. Ninyio N, Schmitt K, Sergon G, Nilsson C, Andersson S, Scherbak N. Stable expression of HIV-1 MPER extended epitope on the surface of the recombinant probiotic bacteria Escherichia Coli Nissle 1917 using CRISPR/Cas9. Microb Cell Fact 2024;23:39.
179. Zhou Y, Song F, Yang H, et al. Construction of a food-grade gene editing system based on CRISPR-Cas9 and its application in Lactococcus lactis NZ9000. Biotechnol Lett 2023;45:955-66.
180. Yu J, Zhou B, Zhang S, et al. Design of a self-driven probiotic-CRISPR/Cas9 nanosystem for sono-immunometabolic cancer therapy. Nat Commun 2022;13:7903.
181. Tian X, Liu X, Zhang Y, et al. Metabolic engineering coupled with adaptive evolution strategies for the efficient production of high-quality L-lactic acid by Lactobacillus paracasei. Bioresour Technol 2021;323:124549.
182. Oh JH, van Pijkeren JP. CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Res 2014;42:e131.
183. Fang M, Zhang R, Wang C, et al. Engineering probiotic Escherichia coli Nissle 1917 to block transfer of multiple antibiotic resistance genes by exploiting a type I CRISPR-Cas system. Appl Environ Microbiol 2024;90:e0081124.
184. Lan Y, Tan S, Cheng S, et al. Development of Escherichia coli Nissle 1917 derivative by CRISPR/Cas9 and application for gamma-aminobutyric acid (GABA) production in antibiotic-free system. Biochem Eng J 2021;168:107952.
185. Luo W, Zhang Z, Zhou D, et al. Deep tumor penetration of CRISPR-Cas system for photothermal-sensitized immunotherapy via probiotics. Nano Lett 2023;23:8081-90.
186. Yang Y, Mao Y, Liu Y, et al. GEDpm-cg: genome editing automated design platform for point mutation construction in corynebacterium glutamicum. Front Bioeng Biotechnol 2021;9:768289.
187. Chien T, Harimoto T, Kepecs B, et al. Enhancing the tropism of bacteria via genetically programmed biosensors. Nat Biomed Eng 2022;6:94-104.