REFERENCES

1. Kamilari E, Efthymiou M, Anagnostopoulos DA, Tsaltas D. Cyprus sausages’ bacterial community identification through metataxonomic sequencing: evaluation of the impact of different DNA extraction protocols on the sausages’ microbial diversity representation. Front Microbiol 2021;12:662957.

2. Carballo J. Sausages: nutrition, safety, processing and quality improvement. Foods 2021;10:890.

3. Škrlep M, Čandek-Potokar M, Batorek-Lukač N, Tomažin U, Flores M. Aromatic profile, physicochemical and sensory traits of dry-fermented sausages produced without nitrites using pork from Krškopolje pig reared in organic and conventional husbandry. Animals 2019;9:55.

4. Van Reckem E, Geeraerts W, Charmpi C, Van der Veken D, De Vuyst L, Leroy F. Exploring the link between the geographical origin of European fermented foods and the diversity of their bacterial communities: the case of fermented meats. Front Microbiol 2019;10:2302.

5. Leroy F, Geyzen A, Janssens M, De Vuyst L, Scholliers P. Meat fermentation at the crossroads of innovation and tradition: a historical outlook. Trends Food Sci Tech 2013;31:130-7.

6. Gaydos NJ, Cutter CN, Campbell JA. Fate of pathogenic bacteria associated with production of pickled sausage by using a cold fill process. J Food Prot 2016;79:1693-9.

7. Nychas GJ, Skandamis PN, Tassou CC, Koutsoumanis KP. Meat spoilage during distribution. Meat Sci 2008;78:77-89.

8. Francesca N, Sannino C, Moschetti G, Settanni L. Microbial characterisation of fermented meat products from the Sicilian swine breed “Suino Nero Dei Nebrodi”. Ann Microbiol 2013;63:53-62.

9. Hultman J, Rahkila R, Ali J, Rousu J, Björkroth KJ. Meat processing plant microbiome and contamination patterns of cold-tolerant bacteria causing food safety and spoilage risks in the manufacture of vacuum-packaged cooked sausages. Appl Environ Microbiol 2015;81:7088-97.

10. Benson AK, David JR, Gilbreth SE, et al. Microbial successions are associated with changes in chemical profiles of a model refrigerated fresh pork sausage during an 80-day shelf life study. Appl Environ Microbiol 2014;80:5178-94.

11. Połka J, Rebecchi A, Pisacane V, Morelli L, Puglisi E. Bacterial diversity in typical Italian salami at different ripening stages as revealed by high-throughput sequencing of 16S rRNA amplicons. Food Microbiol 2015;46:342-56.

12. Fontana C, Bassi D, López C, et al. Microbial ecology involved in the ripening of naturally fermented llama meat sausages. A focus on lactobacilli diversity. Int J Food Microbiol 2016;236:17-25.

13. Pateiro M, Munekata PES, Sant’Ana AS, Domínguez R, Rodríguez-Lázaro D, Lorenzo JM. Application of essential oils as antimicrobial agents against spoilage and pathogenic microorganisms in meat products. Int J Food Microbiol 2021;337:108966.

14. Alirezalu K, Pateiro M, Yaghoubi M, Alirezalu A, Peighambardoust SH, Lorenzo JM. Phytochemical constituents, advanced extraction technologies and techno-functional properties of selected Mediterranean plants for use in meat products. A comprehensive review. Trend Food Sci Tech 2020;100:292-306.

15. Singh VP. Recent approaches in food bio-preservation - a review. Open Vet J 2018;8:104-11.

16. Gómez I, Janardhanan R, Ibañez FC, Beriain MJ. The effects of processing and preservation technologies on meat quality: sensory and nutritional aspects. Foods 2020;9:1416.

17. Feng C, Sun D. Optimisation of immersion vacuum cooling operation and quality of Irish cooked sausages by using response surface methodology. Int J Food Sci Tech 2014;49:1850-8.

18. Ferrocino I, Bellio A, Giordano M, et al. Shotgun metagenomics and volatilome profile of the microbiota of fermented sausages. Appl Environ Microbiol 2018;84:e02120-17.

19. Bokulich NA, Thorngate JH, Richardson PM, Mills DA. Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. Proc Natl Acad Sci U S A 2014;111:E139-48.

20. Anagnostopoulos DA, Kamilari E, Tsaltas D. Contribution of the microbiome as a tool for estimating wine’s fermentation output and authentication. In: Morata A, Loira I, editors. Advances in grape and wine biotechnology. IntechOpen; 2019.

21. Kamilari E, Tomazou M, Antoniades A, Tsaltas D. High throughput sequencing technologies as a new toolbox for deep analysis, characterization and potentially authentication of protection designation of origin cheeses? Int J Food Sci 2019;2019:5837301.

22. Franciosa I, Ferrocino I, Giordano M, Mounier J, Rantsiou K, Cocolin L. Specific metagenomic asset drives the spontaneous fermentation of Italian sausages. Food Res Int 2021;144:110379.

23. Matchado MS, Lauber M, Reitmeier S, et al. Network analysis methods for studying microbial communities: a mini review. Comput Struct Biotechnol J 2021;19:2687-98.

24. Kamilari E, Anagnostopoulos DA, Papademas P, Kamilaris A, Tsaltas D. Characterizing Halloumi cheese’s bacterial communities through metagenomic analysis. LWT 2020;126:109298.

25. Kamilari E, Mina M, Karallis C, Tsaltas D. Metataxonomic analysis of grape microbiota during wine fermentation reveals the distinction of Cyprus regional terroirs. Front Microbiol 2021;12:726483.

26. Papademas P, Kamilari E, Aspri M, et al. Investigation of donkey milk bacterial diversity by 16S rDNA high-throughput sequencing on a Cyprus donkey farm. J Dairy Sci 2021;104:167-78.

27. Kamilari E, Anagnostopoulos DA, Papademas P, Efthymiou M, Tretiak S, Tsaltas D. Snapshot of Cyprus raw goat milk bacterial diversity via 16S rDNA high-throughput sequencing; impact of cold storage conditions. Fermentation 2020;6:100.

28. Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral Ecol 2001;26:32-46.

29. Bokulich NA, Kaehler BD, Rideout JR, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 2018;6:90.

30. McDonald D, Price MN, Goodrich J, et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 2012;6:610-8.

31. Abarenkov K, Henrik Nilsson R, Larsson KH, et al. The UNITE database for molecular identification of fungi - recent updates and future perspectives. New Phytol 2010;186:281-5.

32. Segata N, Abubucker S, Goll J, et al. Microbial community function and biomarker discovery in the human microbiome. Genome Biol 2011;12:P47.

33. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: machine learning in Python. J Mach Learning Res 2011;12:2825-30. Available from: https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf. [Last accessed on 19 Oct 2024]

34. Bokulich NA, Dillon MR, Bolyen E, Kaehler BD, Huttley GA, Caporaso JG. q2-sample-classifier: machine-learning tools for microbiome classification and regression. J Open Res Softw 2018;3:934.

35. Kamilari E, Tsaltas D, Stanton C, Ross RP. Metataxonomic mapping of the microbial diversity of Irish and Eastern Mediterranean cheeses. Foods 2022;11:2483.

36. Faust K, Raes J. CoNet app: inference of biological association networks using Cytoscape. F1000Res 2016;5:1519.

37. Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003;13:2498-504.

38. Barbieri F, Tabanelli G, Montanari C, et al. Mediterranean spontaneously fermented sausages: spotlight on microbiological and quality features to exploit their bacterial biodiversity. Foods 2021;10:2691.

39. Huang Z, Shen Y, Huang X, Qiao M, He RK, Song L. Microbial diversity of representative traditional fermented sausages in different regions of China. J Appl Microbiol 2021;130:133-41.

40. Prado N, Sampayo M, González P, Lombó F, Díaz J. Physicochemical, sensory and microbiological characterization of Asturian Chorizo, a traditional fermented sausage manufactured in Northern Spain. Meat Sci 2019;156:118-24.

41. Liu Y, Wan Z, Yohannes KW, et al. Functional characteristics of lactobacillus and yeast single starter cultures in the ripening process of dry fermented sausage. Front Microbiol 2020;11:611260.

42. Drosinos EH, Paramithiotis S, Kolovos G, Tsikouras I, Metaxopoulos I. Phenotypic and technological diversity of lactic acid bacteria and staphylococci isolated from traditionally fermented sausages in southern Greece. Food Microbiol 2007;24:260-70.

43. Montel M, Masson F, Talon R. Bacterial role in flavour development. Meat Sci 1998;49:S111-23.

44. Bhattacharya D, Nanda PK, Pateiro M, Lorenzo JM, Dhar P, Das AK. Lactic acid bacteria and bacteriocins: novel biotechnological approach for biopreservation of meat and meat products. Microorganisms 2022;10:2058.

45. Arief II, Jenie BSL, Suryati T, Ayuningtyas G, Fuziawan A. Antimicrobial activity of bacteriocin from indigenous Lactobacillus plantarum 2C12 and its application on beef meatball as biopreservative. J Indonesian Trop Anim Agric 2014;37:90-5.

46. Gao Y, Li D, Liu X. Effects of Lactobacillus sakei C2 and sakacin C2 individually or in combination on the growth of Listeria monocytogenes, chemical and odor changes of vacuum-packed sliced cooked ham. Food Control 2015;47:27-31.

47. Aspri M, Bozoudi D, Tsaltas D, Hill C, Papademas P. Raw donkey milk as a source of Enterococcus diversity: assessment of their technological properties and safety characteristics. Food Control 2017;73:81-90.

48. Tidona F, Meucci A, Povolo M, et al. Applicability of Lactococcus hircilactis and Lactococcus laudensis as dairy cultures. Int J Food Microbiol 2018;271:1-7.

49. FAO and WHO. Guidelines for the evaluation of probiotics in food. 2002. Available from: https://isappscience.org/wp-content/uploads/2019/04/probiotic_guidelines.pdf. [Last accessed on 19 Oct 2024].

50. Seleshe S, Kang SN. Effect of different Pediococcus pentosaceus and Lactobacillus plantarum strains on quality characteristics of dry fermented sausage after completion of ripening period. Food Sci Anim Resour 2021;41:636-49.

51. Porto MC, Kuniyoshi TM, Azevedo PO, Vitolo M, Oliveira RP. Pediococcus spp.: an important genus of lactic acid bacteria and pediocin producers. Biotechnol Adv 2017;35:361-74.

52. Ilavenil S, Vijayakumar M, Kim DH, et al. Assessment of probiotic, antifungal and cholesterol lowering properties of Pediococcus pentosaceus KCC-23 isolated from Italian ryegrass. J Sci Food Agric 2016;96:593-601.

53. Fugaban JII, Vazquez Bucheli JE, Park YJ, et al. Antimicrobial properties of Pediococcus acidilactici and Pediococcus pentosaceus isolated from silage. J Appl Microbiol 2022;132:311-30.

54. Kabiraz MP, Majumdar PR, Mahmud MMC, Bhowmik S, Ali A. Conventional and advanced detection techniques of foodborne pathogens: a comprehensive review. Heliyon 2023;9:e15482.

55. Chang SH, Chen CH, Tsai GJ. Effects of chitosan on Clostridium perfringens and application in the preservation of pork sausage. Mar Drugs 2020;18:70.

56. Pernu N, Keto-Timonen R, Lindström M, Korkeala H. High prevalence of Clostridium botulinum in vegetarian sausages. Food Microbiol 2020;91:103512.

57. Muratoglu K, Akkaya E, Hampikyan H, Bingol EB, Cetin O, Colak H. Detection, characterization and antibiotic susceptibility of Clostridioides (Clostridium) difficile in meat products. Food Sci Anim Resour 2020;40:578-87.

58. Mladenović KG, Grujović MŽ, Kiš M, et al. Enterobacteriaceae in food safety with an emphasis on raw milk and meat. Appl Microbiol Biotechnol 2021;105:8615-27.

59. Gwida M, Hotzel H, Geue L, Tomaso H. Occurrence of Enterobacteriaceae in raw meat and in human samples from egyptian retail sellers. Int Sch Res Notices 2014;2014:565671.

60. Jansen W, Woudstra S, Müller A, et al. The safety and quality of pork and poultry meat imports for the common European market received at border inspection post Hamburg Harbour between 2014 and 2015. PLoS One 2018;13:e0192550.

61. Nováková D, Sedláček I, Pantůček R, Štětina V, Švec P, Petráš P. Staphylococcus equorum and Staphylococcus succinus isolated from human clinical specimens. J Med Microbiol 2006;55:523-8.

62. Prpich NZ, Camprubí GE, Cayré ME, Castro MP. Indigenous microbiota to leverage traditional dry sausage production. Int J Food Sci 2021;2021:6696856.

63. Van Ba H, Seo H, Kim J, et al. The effects of starter culture types on the technological quality, lipid oxidation and biogenic amines in fermented sausages. LWT 2016;74:191-8.

64. EFSA Panel on Biological Hazards. Scientific opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed (2013 update). EFSA J 2013;11:3449.

65. Erkmen O. Microbiological analysis of foods and food processing environments. 2022. Available from: https://www.researchgate.net/publication/354968527_Microbiological_Analysis_of_Foods_and_Food_Processing_Environments. [Last accessed on 19 Oct 2024]

66. Wen R, Sun F, Li XA, Chen Q, Kong B. The potential correlations between the fungal communities and volatile compounds of traditional dry sausages from Northeast China. Food Microbiol 2021;98:103787.

67. Ramos-Moreno L, Ruiz-Pérez F, Rodríguez-Castro E, Ramos J. Debaryomyces hansenii is a real tool to improve a diversity of characteristics in sausages and dry-meat products. Microorganisms 2021;9:1512.

68. Cano-García L, Rivera-Jiménez S, Belloch C, Flores M. Generation of aroma compounds in a fermented sausage meat model system by Debaryomyces hansenii strains. Food Chem 2014;151:364-73.

69. Flores M, Corral S, Cano-García L, Salvador A, Belloch C. Yeast strains as potential aroma enhancers in dry fermented sausages. Int J Food Microbiol 2015;212:16-24.

70. Prista C, Michán C, Miranda IM, Ramos J. The halotolerant Debaryomyces hansenii, the Cinderella of non-conventional yeasts. Yeast 2016;33:523-33.

71. Angulo M, Reyes-Becerril M, Medina-Córdova N, Tovar-Ramírez D, Angulo C. Probiotic and nutritional effects of Debaryomyces hansenii on animals. Appl Microbiol Biotechnol 2020;104:7689-99.

72. Jain U, Ver Heul AM, Xiong S, et al. Debaryomyces is enriched in Crohn’s disease intestinal tissue and impairs healing in mice. Science 2021;371:1154-9.

73. Haarer BK, Petzold A, Lillie SH, Brown SS. Identification of MYO4, a second class V myosin gene in yeast. J Cell Sci 1994;107:1055-64.

74. Makky EA, AlMatar M, Mahmood MH, Ting OW, Qi WZ. Evaluation of the antioxidant and antimicrobial activities of ethyl acetate extract of Saccharomyces cerevisiae. Food Technol Biotechnol 2021;59:127-36.

75. Alarcón M, Pérez-Coello MS, Díaz-Maroto MC, Alañón ME, García-Ruiz A, Soriano A. Inactive dry yeast to improve the oxidative stability of Spanish dry-fermented sausage “salchichón”. LWT 2021;146:111385.

76. Kokkinofta R, Fotakis C, Zervou M, et al. Isotopic and elemental authenticity markers: a case study on cypriot wines. Food Anal Methods 2017;10:3902-13.

Microbiome Research Reports
ISSN 2771-5965 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/