REFERENCES
1. de Vos WM, Tilg H, Van Hul M, Cani PD. Gut microbiome and health: mechanistic insights. Gut 2022;71:1020-32.
2. Bogaert D, van Beveren GJ, de Koff EM, et al. Mother-to-infant microbiota transmission and infant microbiota development across multiple body sites. Cell Host Microbe 2023;31:447-60.e6.
3. Homann CM, Rossel CAJ, Dizzell S, et al. Infants’ first solid foods: impact on gut microbiota development in two intercontinental cohorts. Nutrients 2021;13:2639.
4. Differding MK, Benjamin-Neelon SE, Hoyo C, Østbye T, Mueller NT. Timing of complementary feeding is associated with gut microbiota diversity and composition and short chain fatty acid concentrations over the first year of life. BMC Microbiol 2020;20:56.
5. Hou K, Wu ZX, Chen XY, et al. Microbiota in health and diseases. Signal Transduct Target Ther 2022;7:135.
6. Tanaka M, Nakayama J. Development of the gut microbiota in infancy and its impact on health in later life. Allergol Int 2017;66:515-22.
7. Yu JC, Khodadadi H, Malik A, et al. Innate immunity of neonates and infants. Front Immunol 2018;9:1759.
8. Liu W, Hu D, Huo H, et al. Intestinal alkaline phosphatase regulates tight junction protein levels. J Am Coll Surg 2016;222:1009-17.
9. Jokela R, Ponsero AJ, Dikareva E, et al. Sources of gut microbiota variation in a large longitudinal Finnish infant cohort. EBioMedicine 2023;94:104695.
10. Korpela K, Hurley S, Ford SA, et al; CORAL Study Group. Association between gut microbiota development and allergy in infants born during pandemic-related social distancing restrictions. Allergy 2024;79:1938-51.
11. Sanna S, Kurilshikov A, van der Graaf A, Fu J, Zhernakova A. Challenges and future directions for studying effects of host genetics on the gut microbiome. Nat Genet 2022;54:100-6.
12. Jian C, Luukkonen P, Yki-Järvinen H, Salonen A, Korpela K. Quantitative PCR provides a simple and accessible method for quantitative microbiota profiling. PLoS One 2020;15:e0227285.
13. Jian C, Salonen A, Korpela K. Commentary: how to count our microbes? The effect of different quantitative microbiome profiling approaches. Front Cell Infect Microbiol 2021;11:627910.
14. Pang T, Leach ST, Katz T, Day AS, Ooi CY. Fecal biomarkers of intestinal health and disease in children. Front Pediatr 2014;2:6.
15. Singh SB, Lin HC. Role of intestinal alkaline phosphatase in innate immunity. Biomolecules 2021;11:1784.
16. Theprungsirikul J, Skopelja-Gardner S, Rigby WFC. Killing three birds with one BPI: bactericidal, opsonic, and anti-inflammatory functions. J Transl Autoimmun 2021;4:100105.
17. Bevins CL, Salzman NH. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol 2011;9:356-68.
18. Topic RZ, Dodig S. Eosinophil cationic protein--current concepts and controversies. Biochem Med 2011;21:111-21.
19. Damo SM, Kehl-Fie TE, Sugitani N, et al. Molecular basis for manganese sequestration by calprotectin and roles in the innate immune response to invading bacterial pathogens. Proc Natl Acad Sci U S A 2013;110:3841-6.
20. Kell DB, Heyden EL, Pretorius E. The biology of lactoferrin, an iron-binding protein that can help defend against viruses and bacteria. Front Immunol 2020;11:1221.
21. Takeuchi T, Ohno H. IgA in human health and diseases: potential regulator of commensal microbiota. Front Immunol 2022;13:1024330.
22. Johansson MEV, Holmén Larsson JM, Hansson GC. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci U S A 2011;108 Suppl 1:4659-65.
23. Wang L, Llorente C, Hartmann P, Yang AM, Chen P, Schnabl B. Methods to determine intestinal permeability and bacterial translocation during liver disease. J Immunol Methods 2015;421:44-53.
24. Korpela K, Dikareva E, Hanski E, Kolho KL, de Vos WM, Salonen A. Cohort profile: Finnish Health and Early Life Microbiota (HELMi) longitudinal birth cohort. BMJ Open 2019;9:e028500.
25. Salonen A, Nikkilä J, Jalanka-Tuovinen J, et al. Comparative analysis of fecal DNA extraction methods with phylogenetic microarray: effective recovery of bacterial and archaeal DNA using mechanical cell lysis. J Microbiol Methods 2010;81:127-34.
26. Dubois L, Valles-Colomer M, Ponsero A, et al. Paternal and induced gut microbiota seeding complement mother-to-infant transmission. Cell Host Microbe 2024;32:1011-24.e4.
27. Chen S. Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastp. Imeta 2023;2:e107.
28. Danecek P, Bonfield JK, Liddle J, et al. Twelve years of SAMtools and BCFtools. Gigascience 2021;10:giab008.
29. Hiseni P, Rudi K, Wilson RC, Hegge FT, Snipen L. HumGut: a comprehensive human gut prokaryotic genomes collection filtered by metagenome data. Microbiome 2021;9:165.
30. Katrikorpela. mare. 2016. Available from: https://zenodo.org/records/50310. [Last accessed on 25 Dec 2024].
34. Van den Abbeele P, Deyaert S, Thabuis C, et al. Bridging preclinical and clinical gut microbiota research using the ex vivo SIFR® technology. Front Microbiol 2023;14:1131662.
35. Hugenholtz F, de Vos WM. Mouse models for human intestinal microbiota research: a critical evaluation. Cell Mol Life Sci 2018;75:149-60.
36. Nguyen TL, Vieira-Silva S, Liston A, Raes J. How informative is the mouse for human gut microbiota research? Dis Model Mech 2015;8:1-16.
37. Ballard O, Morrow AL. Human milk composition: nutrients and bioactive factors. Pediatr Clin North Am 2013;60:49-74.
38. Henrick BM, Hutton AA, Palumbo MC, et al. Elevated fecal pH indicates a profound change in the breastfed infant gut microbiome due to reduction of Bifidobacterium over the past century. mSphere 2018;3:e00041-18.
39. Yamamura R, Inoue KY, Nishino K, Yamasaki S. Intestinal and fecal pH in human health. Front Microbiomes 2023;2:1192316.
40. Marchant A, Kollmann TR. Understanding the ontogeny of the immune system to promote immune-mediated health for life. Front Immunol 2015;6:77.
41. Nilsen M, Lokmic A, Angell IL, et al. Fecal microbiota nutrient utilization potential suggests mucins as drivers for initial gut colonization of mother-child-shared bacteria. Appl Environ Microbiol 2021;87:e02201-20.
42. Ruas-Madiedo P, Gueimonde M, Fernández-García M, de los Reyes-Gavilán CG, Margolles A. Mucin degradation by Bifidobacterium strains isolated from the human intestinal microbiota. Appl Environ Microbiol 2008;74:1936-40.
43. Lemme-Dumit JM, Song Y, Lwin HW, et al. Altered gut microbiome and fecal immune phenotype in early preterm infants with leaky gut. Front Immunol 2022;13:815046.
44. Szymanska E, Wierzbicka A, Dadalski M, Kierkus J. Fecal zonulin as a noninvasive biomarker of intestinal permeability in pediatric patients with inflammatory bowel diseases-correlation with disease activity and fecal calprotectin. J Clin Med 2021;10:3905.
45. Mantis NJ, Rol N, Corthésy B. Secretory IgA’s complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol 2011;4:603-11.
46. Pabst O, Slack E. IgA and the intestinal microbiota: the importance of being specific. Mucosal Immunol 2020;13:12-21.
47. Fawley J, Gourlay DM. Intestinal alkaline phosphatase: a summary of its role in clinical disease. J Surg Res 2016;202:225-34.
48. Martins RDS, Kooi EMW, Poelstra K, Hulscher JBF. The role of intestinal alkaline phosphatase in the development of necrotizing enterocolitis. Early Hum Dev 2023;183:105797.
49. Malo MS. A high level of intestinal alkaline phosphatase is protective against type 2 diabetes mellitus irrespective of obesity. EBioMedicine 2015;2:2016-23.
50. Lassenius MI, Fogarty CL, Blaut M, et al; FinnDiane Study Group. Intestinal alkaline phosphatase at the crossroad of intestinal health and disease - a putative role in type 1 diabetes. J Intern Med 2017;281:586-600.
51. Estaki M, DeCoffe D, Gibson DL. Interplay between intestinal alkaline phosphatase, diet, gut microbes and immunity. World J Gastroenterol 2014;20:15650-6.
52. Malo MS, Moaven O, Muhammad N, et al. Intestinal alkaline phosphatase promotes gut bacterial growth by reducing the concentration of luminal nucleotide triphosphates. Am J Physiol Gastrointest Liver Physiol 2014;306:826-38.
53. Garrett WS, Onderdonk A. 249 - Bacteroides, Prevotella, Porphyromonas, and Fusobacterium Species (and other medically important anaerobic gram-negative bacilli). In: Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases. Elsevier; 2015. pp. 2773-80.
54. Juttukonda LJ, Skaar EP. Manganese and nutritional immunity. In: Molecular, genetic, and nutritional aspects of major and trace minerals. Elsevier; 2017. pp. 377-87.
55. Nisapakultorn K, Ross KF, Herzberg MC. Calprotectin expression inhibits bacterial binding to mucosal epithelial cells. Infect Immun 2001;69:3692-6.
56. Heinzel S, Jureczek J, Kainulainen V, et al. Elevated fecal calprotectin is associated with gut microbial dysbiosis, altered serum markers and clinical outcomes in older individuals. Sci Rep 2024;14:13513.
57. Hong L, Huang Y, Han J, et al. Dynamics and crosstalk between gut microbiota, metabolome, and fecal calprotectin in very preterm infants: insights into feeding intolerance. Nutrients 2023;15:4849.
58. Lee YM, Min CY, Choi YJ, Jeong SJ. Delivery and feeding mode affects fecal calprotectin levels in infants < 7 months old. Early Hum Dev 2017;108:45-8.
59. Kolho KL, Alfthan H. Concentration of fecal calprotectin in 11,255 children aged 0-18 years. Scand J Gastroenterol 2020;55:1024-7.
60. Sommermeyer H, Bernatek M, Pszczola M, Krauss H, Piatek J. Supporting the diagnosis of infantile colic by a point of care measurement of fecal calprotectin. Front Pediatr 2022;10:978545.
61. Łoniewska B, Adamek K, Węgrzyn D, et al. Analysis of faecal zonulin and calprotectin concentrations in healthy children during the first two years of life. An observational prospective cohort study. J Clin Med 2020;9:777.
62. Cekovic JR, Prodanovic NS, Mijailovic SS, et al. The perinatal factors that influence the excretion of fecal calprotectin in premature-born children. Open Med 2022;17:1275-81.
63. Zhao C, Chen N, Ashaolu TJ. Prebiotic and modulatory evidence of lactoferrin on gut health and function. J Funct Foods 2023;108:105741.
64. Mastromarino P, Capobianco D, Campagna G, et al. Correlation between lactoferrin and beneficial microbiota in breast milk and infant’s feces. Biometals 2014;27:1077-86.
65. Sherman MP, Sherman J, Arcinue R, Niklas V. Randomized control trial of human recombinant lactoferrin: a substudy reveals effects on the fecal microbiome of very low birth weight infants. J Pediatr 2016;173 Suppl:S37-42.
66. González L, Sosa JLP, Mosquito S, et al. Oral lactoferrin administration does not impact the diversity or composition of the infant gut microbiota in a Peruvian cohort. Microbiol Spectr 2023;11:e0009623.
67. Zilbauer M, Jenke A, Wenzel G, et al. Intestinal alpha-defensin expression in pediatric inflammatory bowel disease. Inflamm Bowel Dis 2011;17:2076-86.
68. Savilahti EM, Kukkonen AK, Haahtela T, Tuure T, Kuitunen M, Savilahti E. Intestinal defensin secretion in infancy is associated with the emergence of sensitization and atopic dermatitis. Clin Exp Allergy 2012;42:405-11.
69. Sugi Y, Takahashi K, Kurihara K, et al. α-Defensin 5 gene expression is regulated by gut microbial metabolites. Biosci Biotechnol Biochem 2017;81:242-8.
70. Ekkelenkamp MB, Rooijakkers SHM, Bonten MJM. Chapter 165 - Staphylococci and micrococci. In: Infectious diseases. Elsevier; 2010. pp. 1632-44.
71. Musher DM. Chapter 30 Haemophilus species. In: Medical microbiology. 1996. Available from: https://www.ncbi.nlm.nih.gov/books/NBK8458/. [Last accessed on 25 Dec 2024].
72. Shao Y, Forster SC, Tsaliki E, et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature 2019;574:117-21.
73. Asaf S, Maqsood F, Jalil J, et al. Lipocalin 2 - not only a biomarker: a study of current literature and systematic findings of ongoing clinical trials. Immunol Res 2023;71:287-313.
74. Zollner A, Schmiderer A, Reider SJ, et al. faecal biomarkers in inflammatory bowel diseases: calprotectin versus lipocalin-2-a comparative study. J Crohns Colitis 2021;15:43-54.
75. Jensen BAH, Heyndrickx M, Jonkers D, et al. Small intestine vs. colon ecology and physiology: why it matters in probiotic administration. Cell Rep Med 2023;4:101190.
76. Hogan SP, Rothenberg ME. Eosinophil function in eosinophil-associated gastrointestinal disorders. Curr Allergy Asthma Rep 2006;6:65-71.
77. Sindi AS, Stinson LF, Lai CT, et al. Human milk lactoferrin and lysozyme concentrations vary in response to a dietary intervention. J Nutr Biochem 2025;135:109760.
78. Rubio CA. The natural antimicrobial enzyme lysozyme is up-regulated in gastrointestinal inflammatory conditions. Pathogens 2014;3:73-92.
79. Zhang C, Xiang C, Zhou K, et al. Intestinal lysozyme1 deficiency alters microbiota composition and impacts host metabolism through the emergence of NAD+-secreting ASTB Qing110 bacteria. mSystems 2024;9:e0121423.
80. Yang B, Wang J, Tang B, et al. Characterization of bioactive recombinant human lysozyme expressed in milk of cloned transgenic cattle. PLoS One 2011;6:e17593.
81. Huang G, Li X, Lu D, et al. Lysozyme improves gut performance and protects against enterotoxigenic Escherichia coli infection in neonatal piglets. Vet Res 2018;49:20.
82. Wu Y, Cheng B, Ji L, et al. Dietary lysozyme improves growth performance and intestinal barrier function of weaned piglets. Anim Nutr 2023;14:249-58.
83. Humphreys C. Intestinal permeability. Textbook of natural medicine. Elsevier; 2020. pp. 166-77.e4.