REFERENCES

1. Whipps JM, Lewis K, Cooke RC. Mycoparasitism and plant disease control. In: Burge MN, editors. Fungi in biological control systems. Manchester University Press; 1988.p.161-187. Available from: https://books.google.com/books?hl=zh-CN&lr=&id=qoK7AAAAIAAJ&oi=fnd&pg=PR7&dq=Fungi+in+biological+control+systems&ots=ZGZywqBQQc&sig=SF3yncFR8kM6WBVld-jY1Ymmxec#v=onepage&q=Fungi%20in%20biological%20control%20systems&f=false. [Last accessed on 13 Sep 2024].

2. Berg G, Rybakova D, Fischer D, et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome 2020;8:103.

3. Ursell LK, Metcalf JL, Parfrey LW, Knight R. Defining the human microbiome. Nutr Rev 2012;70 Suppl 1:S38-44.

4. Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol 2011;9:244-53.

5. Morowitz MJ, Carlisle EM, Alverdy JC. Contributions of intestinal bacteria to nutrition and metabolism in the critically ill. Surg Clin North Am 2011;91:771-85.

6. Chow J, Lee SM, Shen Y, Khosravi A, Mazmanian SK. Host–bacterial symbiosis in health and disease. Adv Immunol 2010;107:243-74.

7. Davenport ER, Sanders JG, Song SJ, Amato KR, Clark AG, Knight R. The human microbiome in evolution. BMC Biol 2017;15:127.

8. Dominguez-Bello MG, Godoy-Vitorino F, Knight R, Blaser MJ. Role of the microbiome in human development. Gut 2019;68:1108-14.

9. Bragazzi NL, Del Rio D, Mayer EA, Mena P. We are what, when, and how we eat: the evolutionary impact of dietary shifts on physical and cognitive development, health, and disease. Adv Nutr 2024;15:100280.

10. Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 2016;14:e1002533.

11. Takiishi T, Fenero CIM, Câmara NOS. Intestinal barrier and gut microbiota: shaping our immune responses throughout life. Tissue Barriers 2017;5:e1373208.

12. Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res 2020;30:492-506.

13. Afzaal M, Saeed F, Shah YA, et al. Human gut microbiota in health and disease: unveiling the relationship. Front Microbiol 2022;13:999001.

14. Stewart CJ, Ajami NJ, O'Brien JL, et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 2018;562:583-8.

15. Bäckhed F, Roswall J, Peng Y, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 2015;17:690-703.

16. Vatanen T, Franzosa EA, Schwager R, et al. The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature 2018;562:589-94.

17. Bergström A, Skov TH, Bahl MI, et al. Establishment of intestinal microbiota during early life: a longitudinal, explorative study of a large cohort of danish infants. Appl Environ Microbiol 2014;80:2889-900.

18. Sarkar A, Yoo JY, Valeria Ozorio Dutra S, Morgan KH, Groer M. The association between early-life gut microbiota and long-term health and diseases. J Clin Med 2021;10:459.

19. Wassenaar TM, Panigrahi P. Is a foetus developing in a sterile environment? Lett Appl Microbiol 2014;59:572-9.

20. Escherich T. The intestinal bacteria of the neonate and breast-fed infant. Rev Infect Dis 1989;11:352-6.

21. Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The placenta harbors a unique microbiome. Sci Transl Med 2014;6:237ra65.

22. Morais J, Marques C, Teixeira D, et al. Extremely preterm neonates have more lactobacillus in meconium than very preterm neonates - the in utero microbial colonization hypothesis. Gut Microbes 2020;12:1785804.

23. Seferovic MD, Pace RM, Carroll M, et al. Visualization of microbes by 16S in situ hybridization in term and preterm placentas without intraamniotic infection. Am J Obstet Gynecol 2019;221:146.e1-e23.

24. Stout MJ, Conlon B, Landeau M, et al. Identification of intracellular bacteria in the basal plate of the human placenta in term and preterm gestations. Am J Obstet Gynecol 2013;208:226.e1-7.

25. Jiménez E, Fernández L, Marín ML, et al. Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section. Curr Microbiol 2005;51:270-4.

26. Gschwind R, Fournier T, Kennedy S, et al. Evidence for contamination as the origin for bacteria found in human placenta rather than a microbiota. PLoS One 2020;15:e0237232.

27. Perez-Muñoz ME, Arrieta MC, Ramer-Tait AE, Walter J. A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: implications for research on the pioneer infant microbiome. Microbiome 2017;5:48.

28. Kennedy KM, de Goffau MC, Perez-Muñoz ME, et al. Questioning the fetal microbiome illustrates pitfalls of low-biomass microbial studies. Nature 2023;613:639-49.

29. Kennedy KM, Gerlach MJ, Adam T, et al. Fetal meconium does not have a detectable microbiota before birth. Nat Microbiol 2021;6:865-73.

30. Gustafsson B. Germ-free rearing of rats. Acta Anat (Basel) 1946;2:376-91.

31. Stinson LF, Boyce MC, Payne MS, Keelan JA. The not-so-sterile womb: evidence that the human fetus is exposed to bacteria prior to birth. Front Microbiol 2019;10:1124.

32. Kaisanlahti A, Turunen J, Byts N, et al. Maternal microbiota communicates with the fetus through microbiota-derived extracellular vesicles. Microbiome 2023;11:249.

33. Li Y, Toothaker JM, Ben-Simon S, et al. In utero human intestine harbors unique metabolome, including bacterial metabolites. JCI Insight 2020;5:138751.

34. Aguilera-Castrejon A, Oldak B, Shani T, et al. Ex utero mouse embryogenesis from pre-gastrulation to late organogenesis. Nature 2021;593:119-24.

35. Singh A, Mittal M. Neonatal microbiome - a brief review. J Matern Fetal Neonatal Med 2020;33:3841-8.

36. Mueller NT, Hourigan SK, Hoffmann DE, et al. Bacterial baptism: scientific, medical, and regulatory issues raised by vaginal seeding of c-section-born babies. J Law Med Ethics 2019;47:568-78.

37. Prince AL, Chu DM, Seferovic MD, Antony KM, Ma J, Aagaard KM. The perinatal microbiome and pregnancy: moving beyond the vaginal microbiome. Cold Spring Harb Perspect Med 2015;5:a023051.

38. Starc M, Lučovnik M, Eržen Vrlič P, Jeverica S. Protective effect of lactobacillus crispatus against vaginal colonization with group b streptococci in the third trimester of pregnancy. Pathogens 2022;11:980.

39. Aagaard K, Stewart CJ, Chu D. Una destinatio, viae diversae: does exposure to the vaginal microbiota confer health benefits to the infant, and does lack of exposure confer disease risk? EMBO Rep 2016;17:1679-84.

40. Reyman M, van Houten MA, van Baarle D, et al. Impact of delivery mode-associated gut microbiota dynamics on health in the first year of life. Nat Commun 2019;10:4997.

41. Wernroth ML, Peura S, Hedman AM, et al. Development of gut microbiota during the first 2 years of life. Sci Rep 2022;12:9080.

42. Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 2010;107:11971-5.

43. Słabuszewska-Jóźwiak A, Szymański JK, Ciebiera M, Sarecka-Hujar B, Jakiel G. Pediatrics consequences of caesarean section-a systematic review and meta-analysis. Int J Environ Res Public Health 2020;17:8031.

44. Stokholm J, Thorsen J, Chawes BL, et al. Cesarean section changes neonatal gut colonization. J Allergy Clin Immunol 2016;138:881-889.e2.

45. Wampach L, Heintz-Buschart A, Fritz JV, et al. Birth mode is associated with earliest strain-conferred gut microbiome functions and immunostimulatory potential. Nat Commun 2018;9:5091.

46. Xie J, Tang C, Hong S, et al. Maternal vaginal fluids play a major role in the colonization of the neonatal intestinal microbiota. Front Cell Infect Microbiol 2023;13:1065884.

47. Clausen TD, Bergholt T, Eriksson F, Rasmussen S, Keiding N, Løkkegaard EC. Prelabor cesarean section and risk of childhood type 1 diabetes: a nationwide register-based cohort study. Epidemiology 2016;27:547-55.

48. Hyde MJ, Modi N. The long-term effects of birth by caesarean section: the case for a randomised controlled trial. Early Hum Dev 2012;88:943-9.

49. Cardwell CR, Stene LC, Joner G, Cinek O, Svensson J, Goldacre MJ, et al. Caesarean section is associated with an increased risk of childhood-onset type 1 diabetes mellitus: a meta-analysis of observational studies. Diabetologia 2008;51:726-35.

50. Rutayisire E, Wu X, Huang K, Tao S, Chen Y, Tao F. Cesarean section may increase the risk of both overweight and obesity in preschool children. BMC Pregnancy Childbirth 2016;16:338.

51. Tollånes MC, Moster D, Daltveit AK, Irgens LM. Cesarean section and risk of severe childhood asthma: a population-based cohort study. J Pediatr 2008;153:112-6.

52. Thavagnanam S, Fleming J, Bromley A, Shields MD, Cardwell CR. A meta-analysis of the association between caesarean section and childhood asthma. Clin Exp Allergy 2008;38:629-33.

53. Dahlen HG, Downe S, Wright ML, Kennedy HP, Taylor JY. Childbirth and consequent atopic disease: emerging evidence on epigenetic effects based on the hygiene and EPIIC hypotheses. BMC Pregnancy Childbirth 2016;16:4.

54. Tefera M, Assefa N, Mengistie B, Abrham A, Teji K, Worku T. Elective cesarean section on term pregnancies has a high risk for neonatal respiratory morbidity in developed countries: a systematic review and meta-analysis. Front Pediatr 2020;8:286.

55. Mårild K, Stephansson O, Montgomery S, Murray JA, Ludvigsson JF. Pregnancy outcome and risk of celiac disease in offspring: a nationwide case-control study. Gastroenterology 2012;142:39-45.e3.

56. Bager P, Simonsen J, Nielsen NM, Frisch M. Cesarean section and offspring’s risk of inflammatory bowel disease: a national cohort study. Inflamm Bowel Dis 2012;18:857-62.

57. Sevelsted A, Stokholm J, Bønnelykke K, Bisgaard H. Cesarean section and chronic immune disorders. Obstetrical & Gynecological Survey 2015;70:303-5.

58. Axelsson PB, Clausen TD, Petersen AH, et al. Investigating the effects of cesarean delivery and antibiotic use in early childhood on risk of later attention deficit hyperactivity disorder. J Child Psychol Psychiatry 2019;60:151-9.

59. Curran EA, Dalman C, Kearney PM, et al. Association between obstetric mode of delivery and autism spectrum disorder: a population-based sibling design study. JAMA Psychiatry 2015;72:935-42.

60. Boerma T, Ronsmans C, Melesse DY, et al. Global epidemiology of use of and disparities in caesarean sections. Lancet 2018;392:1341-8.

61. Betrán AP, Ye J, Moller AB, Zhang J, Gülmezoglu AM, Torloni MR. The increasing trend in caesarean section rates: global, regional and national estimates: 1990-2014. PLoS One 2016;11:e0148343.

62. Kiriakopoulos N, Grigoriadis S, Maziotis E, et al. Investigating stress response during vaginal delivery and elective cesarean section through assessment of levels of cortisol, interleukin 6 (IL-6), growth hormone (GH) and insulin-like growth factor 1 (IGF-1). J Clin Med 2019;8:1112.

63. Blaser MJ. The theory of disappearing microbiota and the epidemics of chronic diseases. Nat Rev Immunol 2017;17:461-3.

64. Cho S, Samuel TM, Li T, et al. Interactions between bifidobacterium and bacteroides and human milk oligosaccharides and their associations with infant cognition. Front Nutr 2023;10:1216327.

65. Thongaram T, Hoeflinger JL, Chow J, Miller MJ. Human milk oligosaccharide consumption by probiotic and human-associated bifidobacteria and lactobacilli. J Dairy Sci 2017;100:7825-33.

66. Shao Y, Forster SC, Tsaliki E, et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature 2019;574:117-21.

67. Sanidad KZ, Zeng MY. Neonatal gut microbiome and immunity. Curr Opin Microbiol 2020;56:30-7.

68. Fujimura KE, Slusher NA, Cabana MD, Lynch SV. Role of the gut microbiota in defining human health. Expert Rev Anti Infect Ther 2010;8:435-54.

69. Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 2005;122:107-18.

70. Olszak T, An D, Zeissig S, et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 2012;336:489-93.

71. Lu CY, Ni YH. Gut microbiota and the development of pediatric diseases. J Gastroenterol 2015;50:720-6.

72. Asnicar F, Manara S, Zolfo M, et al. Studying vertical microbiome transmission from mothers to infants by strain-level metagenomic profiling. mSystems 2017;2:e00164-16.

73. Leszczynski P, van Belkum A, Pituch H, Verbrugh H, Meisel-Mikolajczyk F. Vaginal carriage of enterotoxigenic bacteroides fragilis in pregnant women. J Clin Microbiol 1997;35:2899-903.

74. Wilson BC, Butler ÉM, Grigg CP, et al. Oral administration of maternal vaginal microbes at birth to restore gut microbiome development in infants born by caesarean section: a pilot randomised placebo-controlled trial. EBioMedicine 2021;69:103443.

75. Zhou L, Qiu W, Wang J, et al. Effects of vaginal microbiota transfer on the neurodevelopment and microbiome of cesarean-born infants: a blinded randomized controlled trial. Cell Host Microbe 2023;31:1232-47.e5.

76. Wharton KR, Birsner ML. Committee opinion no. 725: vaginal seeding. Obstet Gynecol 2017;130:e274-8.

77. Bossung V, Lupatsii M, Dashdorj L, et al. Timing of antimicrobial prophylaxis for cesarean section is critical for gut microbiome development in term born infants. Gut Microbes 2022;14:2038855.

78. Sommerstein R, Marschall J, Atkinson A, et al. Swissnoso. Antimicrobial prophylaxis administration after umbilical cord clamping in cesarean section and the risk of surgical site infection: a cohort study with 55,901 patients. Antimicrob Resist Infect Control 2020;9:201.

79. Dierikx T, Berkhout D, Eck A, et al. Influence of timing of maternal antibiotic administration during caesarean section on infant microbial colonisation: a randomised controlled trial. Gut 2022;71:1803-11.

80. Azad MB, Konya T, Maughan H, et al. CHILD Study Investigators. Gut microbiota of healthy canadian infants: profiles by mode of delivery and infant diet at 4 months. CMAJ 2013;185:385-94.

81. Chu DM, Ma J, Prince AL, Antony KM, Seferovic MD, Aagaard KM. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat Med 2017;23:314-26.

82. Erbaydar N, Erbaydar T. Relationship between caesarean section and breastfeeding: evidence from the 2013 turkey demographic and health survey. BMC Pregnancy Childbirth 2020;20:55.

83. McGuire MK, McGuire MA. Got bacteria? Curr Opin Biotechnol 2017;44:63-8.

84. Urbaniak C, Angelini M, Gloor GB, Reid G. Human milk microbiota profiles in relation to birthing method, gestation and infant gender. Microbiome 2016;4:1.

85. Khodayar-Pardo P, Mira-Pascual L, Collado MC, Martínez-Costa C. Impact of lactation stage, gestational age and mode of delivery on breast milk microbiota. J Perinatol 2014;34:599-605.

86. Soto A, Martín V, Jiménez E, Mader I, Rodríguez JM, Fernández L. Lactobacilli and bifidobacteria in human breast milk: influence of antibiotherapy and other host and clinical factors. J Pediatr Gastroenterol Nutr 2014;59:78-88.

87. Lyons KE, Shea CO', Grimaud G, et al. The human milk microbiome aligns with lactation stage and not birth mode. Sci Rep 2022;12:5598.

88. Boix-Amorós A, Collado MC, Mira A. Relationship between milk microbiota, bacterial load, macronutrients, and human cells during lactation. Front Microbiol 2016;7:492.

89. Jost T, Lacroix C, Braegger CP, Rochat F, Chassard C. Vertical mother-neonate transfer of maternal gut bacteria via breastfeeding. Environ Microbiol 2014;16:2891-904.

90. Perez PF, Doré J, Leclerc M, et al. Bacterial imprinting of the neonatal immune system: lessons from maternal cells? Pediatrics 2007;119:e724-32.

91. Rodríguez JM. The origin of human milk bacteria: is there a bacterial entero-mammary pathway during late pregnancy and lactation? Adv Nutr 2014;5:779-84.

92. Newburg DS. Innate immunity and human milk. J Nutr 2005;135:1308-12.

93. Ouwerkerk JP, van der Ark KCH, Davids M, et al. Adaptation of akkermansia muciniphila to the oxic-anoxic interface of the mucus layer. Appl Environ Microbiol 2016;82:6983-93.

94. Luna E, Parkar SG, Kirmiz N, et al. Utilization efficiency of human milk oligosaccharides by human-associated akkermansia is strain dependent. Appl Environ Microbiol 2022;88:e0148721.

95. Cortes-Macías E, Selma-Royo M, García-Mantrana I, et al. Maternal diet shapes the breast milk microbiota composition and diversity: impact of mode of delivery and antibiotic exposure. J Nutr 2021;151:330-40.

96. Ho NT, Li F, Lee-Sarwar KA, et al. Meta-analysis of effects of exclusive breastfeeding on infant gut microbiota across populations. Nat Commun 2018;9:4169.

97. Yan J, Liu L, Zhu Y, Huang G, Wang PP. The association between breastfeeding and childhood obesity: a meta-analysis. BMC Public Health 2014;14:1267.

98. Cardwell CR, Stene LC, Ludvigsson J, et al. Breast-feeding and childhood-onset type 1 diabetes: a pooled analysis of individual participant data from 43 observational studies. Diabetes Care 2012;35:2215-25.

99. Chua MC, Ben-Amor K, Lay C, et al. Effect of synbiotic on the gut microbiota of cesarean delivered infants: a randomized, double-blind, multicenter study. J Pediatr Gastroenterol Nutr 2017;65:102-6.

100. Fehr K, Moossavi S, Sbihi H, et al. Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the CHILD cohort study. Cell Host Microbe 2020;28:285-97.e4.

101. Stinson LF, Trevenen ML, Geddes DT. Effect of cold storage on the viable and total bacterial populations in human milk. Nutrients 2022;14:1875.

102. Parigi SM, Eldh M, Larssen P, Gabrielsson S, Villablanca EJ. Breast milk and solid food shaping intestinal immunity. Front Immunol 2015;6:415.

103. Atyeo C, Alter G. The multifaceted roles of breast milk antibodies. Cell 2021;184:1486-99.

104. Lodge CJ, Tan DJ, Lau MX, et al. Breastfeeding and asthma and allergies: a systematic review and meta-analysis. Acta Paediatr 2015;104:38-53.

105. Duijts L, Jaddoe VW, Hofman A, Moll HA. Prolonged and exclusive breastfeeding reduces the risk of infectious diseases in infancy. Pediatrics 2010;126:e18-25.

106. Xu L, Lochhead P, Ko Y, Claggett B, Leong RW, Ananthakrishnan AN. Systematic review with meta-analysis: breastfeeding and the risk of Crohn’s disease and ulcerative colitis. Aliment Pharmacol Ther 2017;46:780-9.

107. Ogbo FA, Agho K, Ogeleka P, Woolfenden S, Page A, Eastwood J. Global Child Health Research Interest Group. Infant feeding practices and diarrhoea in sub-saharan african countries with high diarrhoea mortality. PLoS One 2017;12:e0171792.

108. Su Q, Sun X, Zhu L, et al. Breastfeeding and the risk of childhood cancer: a systematic review and dose-response meta-analysis. BMC Med 2021;19:90.

109. Horta BL, de Lima NP. Breastfeeding and type 2 diabetes: systematic review and meta-analysis. Curr Diab Rep 2019;19:1.

110. Binns C, Lee M, Low WY. The long-term public health benefits of breastfeeding. Asia Pac J Public Health 2016;28:7-14.

111. Qiao J, Dai LJ, Zhang Q, Ouyang YQ. A meta-analysis of the association between breastfeeding and early childhood obesity. J Pediatr Nurs 2020;53:57-66.

112. Bowatte G, Tham R, Allen KJ, et al. Breastfeeding and childhood acute otitis media: a systematic review and meta-analysis. Acta Paediatr 2015;104:85-95.

113. Tham R, Bowatte G, Dharmage SC, et al. Breastfeeding and the risk of dental caries: a systematic review and meta-analysis. Acta Paediatr 2015;104:62-84.

114. McGowan C, Bland R. The benefits of breastfeeding on child intelligence, behavior, and executive function: a review of recent evidence. Breastfeed Med 2023;18:172-87.

115. Pérez-Escamilla R, Buccini GS, Segura-Pérez S, Piwoz E. Perspective: should exclusive breastfeeding still be recommended for 6 months? Adv Nutr 2019;10:931-43.

116. Kramer MS, Kakuma R. Optimal duration of exclusive breastfeeding. Cochrane Database Syst Rev 2012;2012:CD003517.

117. Kim JH, Lee SW, Lee JE, Ha EK, Han MY, Lee E. Breastmilk feeding during the first 4 to 6 months of age and childhood disease burden until 10 years of age. Nutrients 2021;13:2825.

118. der Beek CM, Dejong CHC, Troost FJ, Masclee AAM, Lenaerts K. Role of short-chain fatty acids in colonic inflammation, carcinogenesis, and mucosal protection and healing. Nutr Rev 2017;75:286-305.

119. Kumbhare SV, Patangia DV, Patil RH, Shouche YS, Patil NP. Factors influencing the gut microbiome in children: from infancy to childhood. J Biosci 2019;44:9860.

120. De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 2010;107:14691-6.

121. Stark PL, Lee A. The microbial ecology of the large bowel of breast-fed and formula-fed infants during the first year of life. J Med Microbiol 1982;15:189-203.

122. Klepeis NE, Nelson WC, Ott WR, et al. The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. J Expo Anal Environ Epidemiol 2001;11:231-52.

123. Shin SK, Kim J, Ha SM, et al. Metagenomic insights into the bioaerosols in the indoor and outdoor environments of childcare facilities. PLoS One 2015;10:e0126960.

124. Kembel SW, Meadow JF, O'Connor TK, et al. Architectural design drives the biogeography of indoor bacterial communities. PLoS One 2014;9:e87093.

125. Rai S, Singh DK, Kumar A. Microbial, environmental and anthropogenic factors influencing the indoor microbiome of the built environment. J Basic Microbiol 2021;61:267-92.

126. Brito IL, Gurry T, Zhao S, et al. Transmission of human-associated microbiota along family and social networks. Nat Microbiol 2019;4:964-71.

127. Lane AA, McGuire MK, McGuire MA, et al. Household composition and the infant fecal microbiome: the INSPIRE study. Am J Phys Anthropol 2019;169:526-39.

128. Tavalire HF, Christie DM, Leve LD, Ting N, Cresko WA, Bohannan BJM. Shared environment and genetics shape the gut microbiome after infant adoption. mBio 2021;12:e00548-21.

129. Stokholm J, Blaser MJ, Thorsen J, et al. Maturation of the gut microbiome and risk of asthma in childhood. Nat Commun 2018;9:141.

130. Xie H, Guo R, Zhong H, et al. Shotgun metagenomics of 250 adult twins reveals genetic and environmental impacts on the gut microbiome. Cell Syst 2016;3:572-84.e3.

131. Org E, Parks BW, Joo JW, et al. Genetic and environmental control of host-gut microbiota interactions. Genome Res 2015;25:1558-69.

132. Rausch P, Rehman A, Künzel S, et al. Colonic mucosa-associated microbiota is influenced by an interaction of Crohn disease and FUT2 (secretor) genotype. Proc Natl Acad Sci U S A 2011;108:19030-5.

133. Rehman A, Sina C, Gavrilova O, et al. Nod2 is essential for temporal development of intestinal microbial communities. Gut 2011;60:1354-62.

134. Cahana I, Iraqi FA. Impact of host genetics on gut microbiome: take-home lessons from human and mouse studies. Animal Model Exp Med 2020;3:229-36.

135. Liu Z, Zhang Y, Jin T, Yi C, Ocansey DKW, Mao F. The role of NOD2 in intestinal immune response and microbiota modulation: a therapeutic target in inflammatory bowel disease. Int Immunopharmacol 2022;113:109466.

136. Kates AE, Jarrett O, Skarlupka JH, et al. Household pet ownership and the microbial diversity of the human gut microbiota. Front Cell Infect Microbiol 2020;10:73.

137. Nermes M, Endo A, Aarnio J, Salminen S, Isolauri E. Furry pets modulate gut microbiota composition in infants at risk for allergic disease. J Allergy Clin Immunol 2015;136:1688-90.e1.

138. Gao X, Yin M, Yang P, et al. Effect of exposure to cats and dogs on the risk of asthma and allergic rhinitis: a systematic review and meta-analysis. Am J Rhinol Allergy 2020;34:703-14.

139. Fall T, Ekberg S, Lundholm C, Fang F, Almqvist C. Dog characteristics and future risk of asthma in children growing up with dogs. Sci Rep 2018;8:16899.

140. Ji X, Yao Y, Zheng P, Hao C. The relationship of domestic pet ownership with the risk of childhood asthma: a systematic review and meta-analysis. Front Pediatr 2022;10:953330.

141. Amir A, Erez-Granat O, Braun T, et al. Gut microbiome development in early childhood is affected by day care attendance. NPJ Biofilms Microbiomes 2022;8:2.

142. Parslow RC, McKinney PA, Law GR, Bodansky HJ. Population mixing and childhood diabetes. Int J Epidemiol 2001;30:533-8.

143. Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature 2012;486:222-7.

144. Widyarman AS, Theodorea CF, Udawatte NS, et al. Diversity of oral microbiome of women from urban and rural areas of indonesia: a pilot study. Front Oral Health 2021;2:738306.

145. Brewster R, Tamburini FB, Asiimwe E, Oduaran O, Hazelhurst S, Bhatt AS. Surveying gut microbiome research in africans: toward improved diversity and representation. Trends Microbiol 2019;27:824-35.

146. Gupta VK, Paul S, Dutta C. Geography, ethnicity or subsistence-specific variations in human microbiome composition and diversity. Front Microbiol 2017;8:1162.

147. Brushett S, Sinha T, Reijneveld SA, de Kroon MLA, Zhernakova A. The effects of urbanization on the infant gut microbiota and health outcomes. Front Pediatr 2020;8:408.

148. Benchimol EI, Kaplan GG, Otley AR, et al. Rural and urban residence during early life is associated with risk of inflammatory bowel disease: a population-based inception and birth cohort study. Am J Gastroenterol 2017;112:1412-22.

149. Wong GW, Chow CM. Childhood asthma epidemiology: insights from comparative studies of rural and urban populations. Pediatr Pulmonol 2008;43:107-16.

150. Dagenais GR, Gerstein HC, Zhang X, et al. Variations in diabetes prevalence in low-, middle-, and high-income countries: results from the prospective urban and rural epidemiological study. Diabetes Care 2016;39:780-7.

151. Nielsen CC, Gascon M, Osornio-Vargas AR, et al. Natural environments in the urban context and gut microbiota in infants. Environ Int 2020;142:105881.

152. Kirjavainen PV, Karvonen AM, Adams RI, et al. Farm-like indoor microbiota in non-farm homes protects children from asthma development. Nat Med 2019;25:1089-95.

153. Elten M, Benchimol EI, Fell DB, et al. Residential greenspace in childhood reduces risk of pediatric inflammatory bowel disease: a population-based Cohort study. Am J Gastroenterol 2021;116:347-53.

154. Hanski I, von Hertzen L, Fyhrquist N, et al. Environmental biodiversity, human microbiota, and allergy are interrelated. Proc Natl Acad Sci U S A 2012;109:8334-9.

155. Hertzen L, Hanski I, Haahtela T. Natural immunity. Biodiversity loss and inflammatory diseases are two global megatrends that might be related. EMBO Rep 2011;12:1089-93.

156. Anthony MA, Bender SF, van der Heijden MGA. Enumerating soil biodiversity. Proc Natl Acad Sci U S A 2023;120:e2304663120.

157. Rook GA. 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: darwinian medicine and the ‘hygiene’ or ‘old friends’ hypothesis. Clin Exp Immunol 2010;160:70-9.

158. Rook GA. Regulation of the immune system by biodiversity from the natural environment: an ecosystem service essential to health. Proc Natl Acad Sci U S A 2013;110:18360-7.

159. Rook GAW. The old friends hypothesis: evolution, immunoregulation and essential microbial inputs. Front Allergy 2023;4:1220481.

160. Tasnim N, Quin C, Gill S, Dai C, Hart M, Gibson DL. Early life environmental exposures have a minor impact on the gut ecosystem following a natural birth. Gut Microbes 2021;13:1-15.

161. Horwell E, Vittoria M, Hong HA, Bearn P, Cutting SM. A family of cyclic lipopeptides found in human isolates of bacillus ameliorates acute colitis via direct agonism of toll-like receptor 2 in a murine model of inflammatory bowel disease. Dig Dis Sci 2024;Online ahead of print.

162. Roslund MI, Puhakka R, Grönroos M, et al. ADELE research group. Biodiversity intervention enhances immune regulation and health-associated commensal microbiota among daycare children. Sci Adv 2020;6:eaba2578.

163. Blum WEH, Zechmeister-Boltenstern S, Keiblinger KM. Does soil contribute to the human gut microbiome? Microorganisms 2019;7:287.

164. Hirt H. Healthy soils for healthy plants for healthy humans: how beneficial microbes in the soil, food and gut are interconnected and how agriculture can contribute to human health. EMBO Rep 2020;21:e51069.

165. Mhuireach GÁ, Betancourt-román CM, Green JL, Johnson BR. Spatiotemporal controls on the urban aerobiome. Front Ecol Evol 2019;7:43.

166. Després VR, Huffman JA, Burrows SM, et al. Primary biological aerosol particles in the atmosphere: a review. Tellus B: Chemical and Physical Meteorology 2022;64:15598.

167. Liddicoat C, Sydnor H, Cando-Dumancela C, et al. Naturally-diverse airborne environmental microbial exposures modulate the gut microbiome and may provide anxiolytic benefits in mice. Sci Total Environ 2020;701:134684.

168. Reyman M, van Houten MA, Watson RL, et al. Effects of early-life antibiotics on the developing infant gut microbiome and resistome: a randomized trial. Nat Commun 2022;13:893.

169. Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A 2011;108 Suppl 1:4554-61.

170. Korpela K, Salonen A, Virta LJ, et al. Intestinal microbiome is related to lifetime antibiotic use in finnish pre-school children. Nat Commun 2016;7:10410.

171. Gasparrini AJ, Wang B, Sun X, et al. Persistent metagenomic signatures of early-life hospitalization and antibiotic treatment in the infant gut microbiota and resistome. Nat Microbiol 2019;4:2285-97.

172. Parker EPK, Praharaj I, John J, et al. Changes in the intestinal microbiota following the administration of azithromycin in a randomised placebo-controlled trial among infants in south India. Sci Rep 2017;7:9168.

173. Celind F, Wennergren G, Vasileiadou S, Alm B, Goksör E. Antibiotics in the first week of life were associated with atopic asthma at 12 years of age. Acta Paediatr 2018;107:1798-804.

174. Hviid A, Svanström H, Frisch M. Antibiotic use and inflammatory bowel diseases in childhood. Gut 2011;60:49-54.

175. Kelly D, Kelly A, O'Dowd T, Hayes CB. Antibiotic use in early childhood and risk of obesity: longitudinal analysis of a national cohort. World J Pediatr 2019;15:390-7.

176. Cox LM, Yamanishi S, Sohn J, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 2014;158:705-21.

177. Anthony WE, Wang B, Sukhum KV, et al. Acute and persistent effects of commonly used antibiotics on the gut microbiome and resistome in healthy adults. Cell Rep 2022;39:110649.

178. Ozkul C, Ruiz VE, Battaglia T, et al. A single early-in-life antibiotic course increases susceptibility to DSS-induced colitis. Genome Med 2020;12:65.

179. Buelow E, Bello González TDJ, Fuentes S, et al. Comparative gut microbiota and resistome profiling of intensive care patients receiving selective digestive tract decontamination and healthy subjects. Microbiome 2017;5:88.

180. Fjalstad JW, Esaiassen E, Juvet LK, van den Anker JN, Klingenberg C. Antibiotic therapy in neonates and impact on gut microbiota and antibiotic resistance development: a systematic review. J Antimicrob Chemother 2018;73:569-80.

181. Lukasik J, Dierikx T, Besseling-van der Vaart I, de Meij T, Szajewska H. Multispecies Probiotic in AAD Study Group. Multispecies probiotic for the prevention of antibiotic-associated diarrhea in children: a randomized clinical trial. JAMA Pediatr 2022;176:860-6.

182. Sharif S, Meader N, Oddie SJ, Rojas-Reyes MX, McGuire W. Probiotics to prevent necrotising enterocolitis in very preterm or very low birth weight infants. Cochrane Database Syst Rev 2020;10:CD005496.

183. Kukkonen K, Savilahti E, Haahtela T, et al. Long-term safety and impact on infection rates of postnatal probiotic and prebiotic (synbiotic) treatment: randomized, double-blind, placebo-controlled trial. Pediatrics 2008;122:8-12.

184. Hatakka K, Savilahti E, Pönkä A, et al. Effect of long term consumption of probiotic milk on infections in children attending day care centres: double blind, randomised trial. BMJ 2001;322:1327.

185. Lundelin K, Poussa T, Salminen S, Isolauri E. Long-term safety and efficacy of perinatal probiotic intervention: evidence from a follow-up study of four randomized, double-blind, placebo-controlled trials. Pediatr Allergy Immunol 2017;28:170-5.

186. Rutten NB, Gorissen DM, Eck A, et al. Long term development of gut microbiota composition in atopic children: impact of probiotics. PLoS One 2015;10:e0137681.

187. Dhongade AR, Joshi SS, Kulkarni SV, et al. The efficacy and safety of a bacillus probiotic combination for the treatment of acute diarrhea in children: a double-blind, randomized, placebo-controlled multicentric study. Pediatric Infectious Disease 2022;4:86-91.

188. Turco R, Martinelli M, Miele E, et al. Proton pump inhibitors as a risk factor for paediatric Clostridium difficile infection. Aliment Pharmacol Ther 2010;31:754-9.

189. Huang H, Jiang J, Wang X, Jiang K, Cao H. Exposure to prescribed medication in early life and impacts on gut microbiota and disease development. EClinicalMedicine 2024;68:102428.

190. Joice R, Yasuda K, Shafquat A, Morgan XC, Huttenhower C. Determining microbial products and identifying molecular targets in the human microbiome. Cell Metab 2014;20:731-41.

191. Marcy Y, Ouverney C, Bik EM, et al. Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc Natl Acad Sci U S A 2007;104:11889-94.

192. Yan Y, Nguyen LH, Franzosa EA, Huttenhower C. Strain-level epidemiology of microbial communities and the human microbiome. Genome Med 2020;12:71.

193. Daniel BBJ, Steiger Y, Sintsova A, et al. Assessing microbiome population dynamics using wild-type isogenic standardized hybrid (WISH)-tags. Nat Microbiol 2024;9:1103-16.

194. Jansson JK. Tracking genetically engineered microorganisms in nature. Curr Opin Biotechnol 1995;6:275-83.

195. Geva-Zatorsky N, Alvarez D, Hudak JE, et al. In vivo imaging and tracking of host-microbiota interactions via metabolic labeling of gut anaerobic bacteria. Nat Med 2015;21:1091-100.

196. Rivas-Ruiz F, Pérez-Vicente S, González-Ramírez AR. Bias in clinical epidemiological study designs. Allergol Immunopathol (Madr) 2013;41:54-9.

197. Turin CG, Ochoa TJ. The role of maternal breast milk in preventing infantile diarrhea in the developing world. Curr Trop Med Rep 2014;1:97-105.

198. Ciampo LA, Del Ciampo IRL. Breastfeeding and the benefits of lactation for women’s health. Rev Bras Ginecol Obstet 2018;40:354-9.

199. Hornef MW, Torow N. ‘Layered immunity’ and the ‘neonatal window of opportunity’-timed succession of non-redundant phases to establish mucosal host-microbial homeostasis after birth. Immunology 2020;159:15-25.

200. Gensollen T, Iyer SS, Kasper DL, Blumberg RS. How colonization by microbiota in early life shapes the immune system. Science 2016;352:539-44.

201. Torow N, Yu K, Hassani K, et al. Active suppression of intestinal CD4+TCRαβ+ T-lymphocyte maturation during the postnatal period. Nat Commun 2015;6:7725.

202. Sjögren YM, Tomicic S, Lundberg A, et al. Influence of early gut microbiota on the maturation of childhood mucosal and systemic immune responses. Clin Exp Allergy 2009;39:1842-51.

203. Lu L, Yu Y, Guo Y, Wang Y, Chang EB, Claud EC. Transcriptional modulation of intestinal innate defense/inflammation genes by preterm infant microbiota in a humanized gnotobiotic mouse model. PLoS One 2015;10:e0124504.

204. Reynolds HM, Bettini ML. Early-life microbiota-immune homeostasis. Front Immunol 2023;14:1266876.

205. Ronan V, Yeasin R, Claud EC. Childhood development and the microbiome-the intestinal microbiota in maintenance of health and development of disease during childhood development. Gastroenterology 2021;160:495-506.

206. Constantinides MG, Belkaid Y. Early-life imprinting of unconventional T cells and tissue homeostasis. Science 2021;374:eabf0095.

207. Constantinides MG, Link VM, Tamoutounour S, et al. MAIT cells are imprinted by the microbiota in early life and promote tissue repair. Science 2019;366:eaax6624.

208. Ottman N, Ruokolainen L, Suomalainen A, et al. Soil exposure modifies the gut microbiota and supports immune tolerance in a mouse model. J Allergy Clin Immunol 2019;143:1198-206.e12.

209. Timm S, Svanes C, Janson C, et al. Place of upbringing in early childhood as related to inflammatory bowel diseases in adulthood: a population-based cohort study in Northern Europe. Eur J Epidemiol 2014;29:429-37.

210. Feng M, Yang Z, Pan L, et al. Associations of early life exposures and environmental factors with asthma among children in rural and urban areas of Guangdong, China. Chest 2016;149:1030-41.

Microbiome Research Reports
ISSN 2771-5965 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/