REFERENCES
1. Voelkerding KV, Dames SA, Durtschi JD. Next-generation sequencing: from basic research to diagnostics. Clin Chem 2009;55:641-58.
2. National Research Council. The new science of metagenomics: revealing the secrets of our microbial planet. Washington, DC: The National Academies Press; 2007.
3. Martín R, Miquel S, Langella P, Bermúdez-Humarán LG. The role of metagenomics in understanding the human microbiome in health and disease. Virulence 2014;5:413-23.
4. Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012;490:55-60.
5. Wang N, Zhu F, Chen L, Chen K. Proteomics, metabolomics and metagenomics for type 2 diabetes and its complications. Life Sci 2018;212:194-202.
6. Valles-Colomer M, Falony G, Darzi Y, et al. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat Microbiol 2019;4:623-32.
7. Lai J, Li A, Jiang J, et al. Metagenomic analysis reveals gut bacterial signatures for diagnosis and treatment outcome prediction in bipolar depression. Psychiatry Res 2022;307:114326.
8. Kishikawa T, Maeda Y, Nii T, et al. 'Comment on 'Metagenome-wide association study of gut microbiome revealed novel aetiology of rheumatoid arthritis in the Japanese population' by Kishikawa et al.' by Kitamura et al. Ann Rheum Dis 2020;79:103-11.
9. Chu Y, Sun S, Huang Y, et al. Metagenomic analysis revealed the potential role of gut microbiome in gout. NPJ Biofilms Microbiomes 2021;7:66.
10. Eloe-Fadrosh EA, Rasko DA. The human microbiome: from symbiosis to pathogenesis. Annu Rev Med 2013;64:145-63.
11. Teeling H, Glöckner FO. Current opportunities and challenges in microbial metagenome analysis - a bioinformatic perspective. Brief Bioinform 2012;13:728-42.
12. Chiang A, Dekker JP. From the pipeline to the bedside: advances and challenges in clinical metagenomics. J Infect Dis 2020;221:S331-40.
13. Sharpton TJ. An introduction to the analysis of shotgun metagenomic data. Front Plant Sci 2014;5:209.
14. Piro VC, Lindner MS, Renard BY. DUDes: a top-down taxonomic profiler for metagenomics. Bioinformatics 2016;32:2272-80.
15. Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O, Huttenhower C. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods 2012;9:811-4.
16. Tran Q, Pham DT, Phan V. Using 16S rRNA gene as marker to detect unknown bacteria in microbial communities. BMC Bioinformatics 2017;18:499.
17. Popic V, Kuleshov V, Snyder M, Batzoglou S. Fast metagenomic binning via hashing and bayesian clustering. J Comput Biol 2018;25:677-88.
18. Qian J, Comin M. MetaCon: unsupervised clustering of metagenomic contigs with probabilistic k-mers statistics and coverage. BMC Bioinformatics 2019;20:367.
19. Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015;31:1674-6.
20. Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res 2017;27:824-34.
21. Lindner MS, Renard BY. Metagenomic profiling of known and unknown microbes with microbeGPS. PLoS One 2015;10:e0117711.
22. Pham DT, Gao S, Phan V. An accurate and fast alignment-free method for profiling microbial communities. J Bioinform Comput Biol 2017;15:1740001.
23. Müller A, Hundt C, Hildebrandt A, Hankeln T, Schmidt B. MetaCache: context-aware classification of metagenomic reads using minhashing. Bioinformatics 2017;33:3740-8.
24. Ounit R, Wanamaker S, Close TJ, Lonardi S. CLARK: fast and accurate classification of metagenomic and genomic sequences using discriminative k-mers. BMC Genomics 2015;16:236.
25. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol 2014;15:R46.
26. Lindgreen S, Adair KL, Gardner PP. An evaluation of the accuracy and speed of metagenome analysis tools. Sci Rep 2016;6:19233.
27. Stranneheim H, Käller M, Allander T, Andersson B, Arvestad L, Lundeberg J. Classification of DNA sequences using Bloom filters. Bioinformatics 2010;26:1595-600.
28. Srikakulam SK, Keller S, Dabbaghie F, Bals R, Kalinina OV. MetaProFi: an ultrafast chunked Bloom filter for storing and querying protein and nucleotide sequence data for accurate identification of functionally relevant genetic variants. Bioinformatics 2023;39:btad101.
29. Bradley P, den Bakker HC, Rocha EPC, McVean G, Iqbal Z. Ultrafast search of all deposited bacterial and viral genomic data. Nat Biotechnol 2019;37:152-9.
31. Lemane T, Medvedev P, Chikhi R, Peterlongo P. kmtricks: efficient and flexible construction of Bloom filters for large sequencing data collections. Bioinform Adv 2022;2:vbac029.
33. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: machine learning in Python. J Mach Learn Res 2011;12:2825-30. Available from: https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf?ref=https:/. [Last accessed on 28 March 2024].
34. Buitinck L, Louppe G, Blondel M, et al. API design for machine learning software: experiences from the scikit-learn project. arXiv. [Preprint.] Sep 1, 2013 [accessed 2024 Mar 28]. Available from: https://arxiv.org/abs/1309.0238.
35. Mende DR, Waller AS, Sunagawa S, et al. Assessment of metagenomic assembly using simulated next generation sequencing data. PLoS One 2012;7:e31386.
36. Sczyrba A, Hofmann P, Belmann P, et al. Critical Assessment of Metagenome Interpretation-a benchmark of metagenomics software. Nat Methods 2017;14:1063-71.
37. Ye SH, Siddle KJ, Park DJ, Sabeti PC. Benchmarking metagenomics tools for taxonomic classification. Cell 2019;178:779-94.
38. Salzberg SL, Breitwieser FP, Kumar A, et al. Next-generation sequencing in neuropathologic diagnosis of infections of the nervous system. Neurol Neuroimmunol Neuroinflamm 2016;3:e251.
39. Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol 2019;20:257.
40. Breitwieser FP, Baker DN, Salzberg SL. KrakenUniq: confident and fast metagenomics classification using unique k-mer counts. Genome Biol 2018;19:198.
41. Kim D, Song L, Breitwieser FP, Salzberg SL. Centrifuge: rapid and sensitive classification of metagenomic sequences. Genome Res 2016;26:1721-9.
42. Pierce NT, Irber L, Reiter T, Brooks P, Brown CT. Large-scale sequence comparisons with sourmash. F1000Res 2019;8:1006.