REFERENCES
1. Aragón IM, Herrera-Imbroda B, Queipo-Ortuño MI, et al. The urinary tract microbiome in health and disease. Eur Urol Focus 2018;4:128-38.
2. Newstead LL, Varjonen K, Nuttall T, Paterson GK. Staphylococcal-produced bacteriocins and antimicrobial peptides: their potential as alternative treatments for Staphylococcus aureus infections. Antibiotics 2020;9:40.
3. Valles-Colomer M, Manghi P, Cumbo F, et al. Neuroblastoma is associated with alterations in gut microbiome composition subsequent to maternal microbial seeding. EBioMedicine 2024;99:104917.
4. Xie J, Liu M, Deng X, et al. Gut microbiota reshapes cancer immunotherapy efficacy: mechanisms and therapeutic strategies. iMeta 2024;3:e156.
5. Zheng J, Gänzle MG, Lin XB, Ruan L, Sun M. Diversity and dynamics of bacteriocins from human microbiome. Environ Microbiol 2015;17:2133-43.
6. Mousa WK, Athar B, Merwin NJ, Magarvey NA. Antibiotics and specialized metabolites from the human microbiota. Nat Prod Rep 2017;34:1302-31.
7. Culligan EP, Sleator RD. Advances in the microbiome: applications to Clostridium difficile infection. J Clin Med 2016;5:83.
8. O’Sullivan JN, Rea MC, O’Connor PM, Hill C, Ross RP. Human skin microbiota is a rich source of bacteriocin-producing staphylococci that kill human pathogens. FEMS Microbiol Ecol 2019;95:fiy241.
9. Wosinska L, Walsh CJ, O’Connor PM, et al. In vitro and in silico based approaches to identify potential novel bacteriocins from the athlete gut microbiome of an elite athlete cohort. Microorganisms 2022;10:701.
10. Angelopoulou A, Warda AK, O’Connor PM, et al. Diverse bacteriocins produced by strains from the human milk microbiota. Front Microbiol 2020;11:788.
11. King AM, Zhang Z, Glassey E, Siuti P, Clardy J, Voigt CA. Systematic mining of the human microbiome identifies antimicrobial peptides with diverse activity spectra. Nat Microbiol 2023;8:2420-34.
12. Jones J, Murphy CP, Sleator RD, Culligan EP. The urobiome, urinary tract infections, and the need for alternative therapeutics. Microb Pathog 2021;161:105295.
14. Acedo JZ, Chiorean S, Vederas JC, van Belkum MJ. The expanding structural variety among bacteriocins from Gram-positive bacteria. FEMS Microbiol Rev 2018;42:805-28.
15. Chikindas ML, Weeks R, Drider D, Chistyakov VA, Dicks LM. Functions and emerging applications of bacteriocins. Curr Opin Biotechnol 2018;49:23-8.
16. Riley MA, Wertz JE. Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol 2002;56:117-37.
17. Héchard Y, Sahl HG. Mode of action of modified and unmodified bacteriocins from Gram-positive bacteria. Biochimie 2002;84:545-57.
18. Heilbronner S, Krismer B, Brötz-Oesterhelt H, Peschel A. The microbiome-shaping roles of bacteriocins. Nat Rev Microbiol 2021;19:726-39.
19. Chavan MA, Riley MA. Molecular evolution of bacteriocins in gram-negative bacteria. In: Riley MA, Chavan MA, editors. Bacteriocins. Berlin: Springer Berlin Heidelberg; 2007. pp. 19-43.
20. Ghodhbane H, Elaidi S, Sabatier JM, Achour S, Benhmida J, Regaya I. Bacteriocins active against multi-resistant gram negative bacteria implicated in nosocomial infections. Infect Disord Drug Targets 2015;15:2-12.
23. Cotter PD, Ross RP, Hill C. Bacteriocins - a viable alternative to antibiotics? Nat Rev Microbiol 2013;11:95-105.
24. Benítez-Chao DF, León-Buitimea A, Lerma-Escalera JA, Morones-Ramírez JR. Bacteriocins: an overview of antimicrobial, toxicity, and biosafety assessment by in vivo models. Front Microbiol 2021;12:630695.
25. Egan K, Field D, Ross RP, Cotter PD, Hill C. In silico prediction and exploration of potential bacteriocin gene clusters within the bacterial genus Geobacillus. Front Microbiol 2018;9:2116.
26. van Heel AJ, de Jong A, Song C, Viel JH, Kok J, Kuipers OP. BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res 2018;46:W278-81.
27. Blin K, Shaw S, Augustijn HE, et al. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res 2023;51:W46-50.
28. Collins FWJ, O’Connor PM, O’Sullivan O, et al. Bacteriocin gene-trait matching across the complete Lactobacillus pan-genome. Sci Rep 2017;7:3481.
29. Conrads G, Westenberger J, Lürkens M, Abdelbary MMH. Isolation and bacteriocin-related typing of Streptococcus dentisani. Front Cell Infect Microbiol 2019;9:110.
30. Miller-Ensminger T, Garretto A, Brenner J, et al. Bacteriophages of the urinary microbiome. J Bacteriol 2018;200:e00738-17.
31. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403-10.
32. Brubaker L, Gourdine JPF, Siddiqui NY, et al. Forming consensus to advance urobiome research. mSystems 2021;6:e0137120.
33. Walsh CJ, Guinane CM, Hill C, Ross RP, O’Toole PW, Cotter PD. In silico identification of bacteriocin gene clusters in the gastrointestinal tract, based on the Human Microbiome Project’s reference genome database. BMC Microbiol 2015;15:183.
34. Christenson JK, Gordon DM. Evolution of colicin BM plasmids: the loss of the colicin B activity gene. Microbiology 2009;155:1645-55.
35. Wolfe AJ, Brubaker L. Urobiome updates: advances in urinary microbiome research. Nat Rev Urol 2019;16:73-4.
36. Roth RS, Liden M, Huttner A. The urobiome in men and women: a clinical review. Clin Microbiol Infect 2023;29:1242-8.
37. Daba GM, Elkhateeb WA. Bacteriocins of lactic acid bacteria as biotechnological tools in food and pharmaceuticals: current applications and future prospects. Biocatal Agric Biotechnol 2020;28:101750.
38. Mokoena MP. Lactic acid bacteria and their bacteriocins: classification, biosynthesis and applications against uropathogens: a mini-review. Molecules 2017;22:1255.
39. Dawid S, Roche AM, Weiser JN. The blp bacteriocins of Streptococcus pneumoniae mediate intraspecies competition both in vitro and in vivo. Infect Immun 2007;75:443-51.
40. Franz CMAP, Van Belkum MJ, Holzapfel WH, Abriouel H, Gálvez A. Diversity of enterococcal bacteriocins and their grouping in a new classification scheme. FEMS Microbiol Rev 2007;31:293-310.
41. Kasuga G, Tanaka M, Harada Y, et al. Homologous expression and characterization of gassericin T and gassericin S, a novel class IIb bacteriocin produced by Lactobacillus gasseri LA327. Appl Environ Microbiol 2019;85:e02815-18.
42. Vassiliadis G, Destoumieux-Garzón D, Lombard C, Rebuffat S, Peduzzi J. Isolation and characterization of two members of the siderophore-microcin family, microcins M and H47. Antimicrob Agents Chemother 2010;54:288-97.
43. Garcia-Gutierrez E, O’Connor PM, Colquhoun IJ, et al. Production of multiple bacteriocins, including the novel bacteriocin gassericin M, by Lactobacillus gasseri LM19, a strain isolated from human milk. Appl Microbiol Biotechnol 2020;104:3869-84.
44. Jiang H, Li P, Gu Q. Heterologous expression and purification of plantaricin NC8, a two-peptide bacteriocin against Salmonella spp. from Lactobacillus plantarum ZJ316. Protein Expr Purif 2016;127:28-34.
45. Jamalifar H, Rahimi HR, Samadi N, et al. Antimicrobial activity of different Lactobacillus species against multi-drug resistant clinical isolates of Pseudomonas aeruginosa. Iran J Microbiol 2011;3:21-5.
46. Butler DSC, Silvestroni A, Stapleton AE. Cytoprotective effect of Lactobacillus crispatus CTV-05 against Uropathogenic E. coli. Pathogens 2016;5:27.
47. Reid G, Bruce AW, Fraser N, Heinemann C, Owen J, Henning B. Oral probiotics can resolve urogenital infections. FEMS Immunol Med Microbiol 2001;30:49-52.
48. Ya W, Reifer C, Miller LE. Efficacy of vaginal probiotic capsules for recurrent bacterial vaginosis: a double-blind, randomized, placebo-controlled study. Am J Obstet Gynecol 2010;203:120.e1-6.
49. Beyitler I, Kavukcu S. Probiotics for prophylaxis and treatment of urinary tract infections in children. Iran J Pediatr 2016;27:e7695.
50. Hilt EE, McKinley K, Pearce MM, et al. Urine is not sterile: use of enhanced urine culture techniques to detect resident bacterial flora in the adult female bladder. J Clin Microbiol 2014;52:871-6.
51. Tagg JR, Dajani AS, Wannamaker LW. Bacteriocins of gram-positive bacteria. Bacteriol Rev 1976;40:722-56.
52. Nes IF, Diep DB, Holo H. Bacteriocin diversity in Streptococcus and Enterococcus. J Bacteriol 2007;189:1189-98.
53. De Vuyst L, Tsakalidou E. Streptococcus macedonicus, a multi-functional and promising species for dairy fermentations. Int Dairy J 2008;18:476-85.
54. Lasagno M, Navarro MLA, Moliva M, Reinoso E. Screening of bacteriocin associated genes of Streptococcus uberis strains. Heliyon 2019;5:e02393.
55. Christ K, Al-Kaddah S, Wiedemann I, Rattay B, Sahl HG, Bendas G. Membrane lipids determine the antibiotic activity of the lantibiotic gallidermin. J Membr Biol 2008;226:9-16.
56. Wirawan RE, Klesse NA, Jack RW, Tagg JR. Molecular and genetic characterization of a novel nisin variant produced by Streptococcus uberis. Appl Environ Microbiol 2006;72:1148-56.
57. Marković KG, Grujović MŽ, Koraćević MG, et al. Colicins and microcins produced by Enterobacteriaceae: characterization, mode of action, and putative applications. Int J Environ Res Public Health 2022;19:11825.
58. Hahn-Löbmann S, Stephan A, Schulz S, et al. Colicins and salmocins - new classes of plant-made non-antibiotic food antibacterials. Front Plant Sci 2019;10:437.
59. Hussein AR, Khalaf ZZ, Kadhim MJ. The antibiofilm activity of bacteriocin produced by Proteus mirabilis against some bacterial species. Curr Res Microbiol Biotechnol 2017;5:1071-7. Available from: https://www.researchgate.net/profile/Alyaa-Hussein-2/publication/328052134_The_antibiofilm_activity_of_bacteriocin_produced_by_Proteus_mirabilis_against_some_bacterial_species/links/5bb5208ca6fdccd3cb8517fd/The-antibiofilm-activity-of-bacteriocin-produced-by-Proteus-mirabilis-against-some-bacterial-species.pdf. [Last accessed on 26 Mar 2024]
60. Roy SM, Riley MA. Evaluation of the potential of colicins to prevent extraluminal contamination of urinary catheters by Escherichia coli. Int J Antimicrob Agents 2019;54:619-25.
61. Sharp C, Boinett C, Cain A, et al. O-antigen-dependent colicin insensitivity of uropathogenic Escherichia coli. J Bacteriol 2019;201:e00545-18.
62. Sharma D, Gajjar D, Seshadri S. Understanding the role of gut microfloral bifidobacterium in cancer and its potential therapeutic applications. Microbiome Res Rep 2024;3:3.
63. Sassone-Corsi M, Nuccio SP, Liu H, et al. Microcins mediate competition among Enterobacteriaceae in the inflamed gut. Nature 2016;540:280-3.
64. Culligan EP, Hill C, Sleator RD. Probiotics and gastrointestinal disease: successes, problems and future prospects. Gut Pathog 2009;1:19.